Machine Learning-Driven Discovery of Metal-Organic Frameworks for Efficient CO2 Capture in Humid Condition
2021-02-22
发表期刊ACS SUSTAINABLE CHEMISTRY & ENGINEERING (IF:7.1[JCR-2023],7.9[5-Year])
ISSN2168-0485
卷号9期号:7页码:2872-2879
发表状态已发表
DOI10.1021/acssuschemeng.0c08806
摘要

This paper presents a computational study to design tailor-made metal-organic frameworks (MOFs) for efficient CO2 capture in humid conditions. Target-specific MOFs were generated in our computational platform incorporating the Monte Carlo tree search and recurrent neural networks according to the objective function values that combine three requirements of high adsorption performance, experimental accessibility of designed materials, and good hydrophobicity (i.e., the low Henry coefficient of water in pore space) to be applied in humid conditions. With a given input of 27 different combinations of metal node and topology net information extracted from experimental MOFs, our approach successfully designed promising and novel metal-organic frameworks for CO2 capture, satisfying the three requirements in good balance. Furthermore, the detailed analysis of the structure-property relationship identified that moderate D-i (the diameter of the largest included sphere) of 14.18 A and accessible surface area (ASA) of 1750 m(2)/g values are desirable for high-performing MOFs for CO2 capture, which is attributed to the trade-off relationship between good adsorption selectivity (small pore size is desired) and high adsorption capacity (sufficient pore size is necessary).

关键词metal-organic framework recurrent neural network Monte Carlo tree search carbon capture
收录类别SCI ; EI ; SCIE
语种英语
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Engineering
WOS类目Chemistry, Multidisciplinary ; Green & Sustainable Science & Technology ; Engineering, Chemical
WOS记录号WOS:000621667100024
出版者AMER CHEMICAL SOC
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/125784
专题物质科学与技术学院_博士生
物质科学与技术学院_PI研究组_yongjin lee组
物质科学与技术学院_硕士生
共同第一作者Zhang, Kexin
通讯作者Lee, Yongjin
作者单位
1.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China;
2.Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201203, Peoples R China;
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China;
4.Inha Univ, Dept Chem & Chem Engn, Educ & Res Ctr Smart Energy & Mat, Incheon 22212, South Korea
第一作者单位物质科学与技术学院
通讯作者单位物质科学与技术学院
第一作者的第一单位物质科学与技术学院
推荐引用方式
GB/T 7714
Zhang, Xiangyu,Zhang, Kexin,Yoo, Hyeonsuk,et al. Machine Learning-Driven Discovery of Metal-Organic Frameworks for Efficient CO2 Capture in Humid Condition[J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING,2021,9(7):2872-2879.
APA Zhang, Xiangyu,Zhang, Kexin,Yoo, Hyeonsuk,&Lee, Yongjin.(2021).Machine Learning-Driven Discovery of Metal-Organic Frameworks for Efficient CO2 Capture in Humid Condition.ACS SUSTAINABLE CHEMISTRY & ENGINEERING,9(7),2872-2879.
MLA Zhang, Xiangyu,et al."Machine Learning-Driven Discovery of Metal-Organic Frameworks for Efficient CO2 Capture in Humid Condition".ACS SUSTAINABLE CHEMISTRY & ENGINEERING 9.7(2021):2872-2879.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Xiangyu]的文章
[Zhang, Kexin]的文章
[Yoo, Hyeonsuk]的文章
百度学术
百度学术中相似的文章
[Zhang, Xiangyu]的文章
[Zhang, Kexin]的文章
[Yoo, Hyeonsuk]的文章
必应学术
必应学术中相似的文章
[Zhang, Xiangyu]的文章
[Zhang, Kexin]的文章
[Yoo, Hyeonsuk]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。