ShanghaiTech University Knowledge Management System
Machine Learning-Driven Discovery of Metal-Organic Frameworks for Efficient CO2 Capture in Humid Condition | |
2021-02-22 | |
发表期刊 | ACS SUSTAINABLE CHEMISTRY & ENGINEERING (IF:7.1[JCR-2023],7.9[5-Year]) |
ISSN | 2168-0485 |
卷号 | 9期号:7页码:2872-2879 |
发表状态 | 已发表 |
DOI | 10.1021/acssuschemeng.0c08806 |
摘要 | This paper presents a computational study to design tailor-made metal-organic frameworks (MOFs) for efficient CO2 capture in humid conditions. Target-specific MOFs were generated in our computational platform incorporating the Monte Carlo tree search and recurrent neural networks according to the objective function values that combine three requirements of high adsorption performance, experimental accessibility of designed materials, and good hydrophobicity (i.e., the low Henry coefficient of water in pore space) to be applied in humid conditions. With a given input of 27 different combinations of metal node and topology net information extracted from experimental MOFs, our approach successfully designed promising and novel metal-organic frameworks for CO2 capture, satisfying the three requirements in good balance. Furthermore, the detailed analysis of the structure-property relationship identified that moderate D-i (the diameter of the largest included sphere) of 14.18 A and accessible surface area (ASA) of 1750 m(2)/g values are desirable for high-performing MOFs for CO2 capture, which is attributed to the trade-off relationship between good adsorption selectivity (small pore size is desired) and high adsorption capacity (sufficient pore size is necessary). |
关键词 | metal-organic framework recurrent neural network Monte Carlo tree search carbon capture |
收录类别 | SCI ; EI ; SCIE |
语种 | 英语 |
WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Engineering |
WOS类目 | Chemistry, Multidisciplinary ; Green & Sustainable Science & Technology ; Engineering, Chemical |
WOS记录号 | WOS:000621667100024 |
出版者 | AMER CHEMICAL SOC |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/125784 |
专题 | 物质科学与技术学院_博士生 物质科学与技术学院_PI研究组_yongjin lee组 物质科学与技术学院_硕士生 |
共同第一作者 | Zhang, Kexin |
通讯作者 | Lee, Yongjin |
作者单位 | 1.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China; 2.Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201203, Peoples R China; 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China; 4.Inha Univ, Dept Chem & Chem Engn, Educ & Res Ctr Smart Energy & Mat, Incheon 22212, South Korea |
第一作者单位 | 物质科学与技术学院 |
通讯作者单位 | 物质科学与技术学院 |
第一作者的第一单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhang, Xiangyu,Zhang, Kexin,Yoo, Hyeonsuk,et al. Machine Learning-Driven Discovery of Metal-Organic Frameworks for Efficient CO2 Capture in Humid Condition[J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING,2021,9(7):2872-2879. |
APA | Zhang, Xiangyu,Zhang, Kexin,Yoo, Hyeonsuk,&Lee, Yongjin.(2021).Machine Learning-Driven Discovery of Metal-Organic Frameworks for Efficient CO2 Capture in Humid Condition.ACS SUSTAINABLE CHEMISTRY & ENGINEERING,9(7),2872-2879. |
MLA | Zhang, Xiangyu,et al."Machine Learning-Driven Discovery of Metal-Organic Frameworks for Efficient CO2 Capture in Humid Condition".ACS SUSTAINABLE CHEMISTRY & ENGINEERING 9.7(2021):2872-2879. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。