ShanghaiTech University Knowledge Management System
Recurrent Neural Network Assisted Equalization for FTN Signaling | |
2020 | |
会议录名称 | ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC)
![]() |
ISSN | 1550-3607 |
页码 | #VALUE! |
发表状态 | 已发表 |
摘要 | In this paper, we consider the application of neural network for equalization of Faster-than-Nyquist (FTN) Signaling. First, we formulate the detection problem as a supervised regression task in machine learning framework. Then a recurrent neural network (RNN) called Bi-directional long short-term memory (Bi-LSTM) is proposed to characterize the feature of inter-symbol interference (ISI) introduced in FTN Signaling. Moreover, we describe a mismatch SNR strategy for building the training Dataset that can effectively help to prevent overfitting. Numerical results prove that the BER performance of the proposed neural network based detector is close to the theoretical optimal maximum likelihood sequence estimation (MLSE) when symbol rate within the Mazo Limit, and Bi-LSTM could be a more realistic scheme compare with MLSE when symbol rate exceeds the Mazo Limit. |
会议录编者/会议主办者 | IEEE |
关键词 | FTN Signaling Equalization Machine learning Recurrent neural network |
会议名称 | IEEE International Conference on Communications (IEEE ICC) / Workshop on NOMA for 5G and Beyond |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | ELECTR NETWORK |
会议日期 | JUN 07-11, 2020 |
收录类别 | CPCI ; CPCI-S |
语种 | 英语 |
WOS研究方向 | Engineering ; Telecommunications |
WOS类目 | Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000606970301008 |
WOS关键词 | JOINT CHANNEL ESTIMATION ; NYQUIST |
原始文献类型 | Proceedings Paper |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/125685 |
专题 | 信息科学与技术学院_硕士生 |
通讯作者 | Lai, Shihao |
作者单位 | 1.Univ Chinese Acad Sci, Beijing, Peoples R China; 2.ShanghaiTech Univ, Shanghai, Peoples R China; 3.Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Lai, Shihao,Li, Mingqi. Recurrent Neural Network Assisted Equalization for FTN Signaling[C]//IEEE. 345 E 47TH ST, NEW YORK, NY 10017 USA,2020:#VALUE!. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Lai, Shihao]的文章 |
[Li, Mingqi]的文章 |
百度学术 |
百度学术中相似的文章 |
[Lai, Shihao]的文章 |
[Li, Mingqi]的文章 |
必应学术 |
必应学术中相似的文章 |
[Lai, Shihao]的文章 |
[Li, Mingqi]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。