| |||||||
ShanghaiTech University Knowledge Management System
Hierarchical Optimization of 3D Point Cloud Registration | |
2020-12 | |
发表期刊 | SENSORS (IF:3.4[JCR-2023],3.7[5-Year]) |
卷号 | 20期号:23 |
发表状态 | 已发表 |
DOI | 10.3390/s20236999 |
摘要 | Rigid registration of 3D point clouds is the key technology in robotics and computer vision. Most commonly, the iterative closest point (ICP) and its variants are employed for this task. These methods assume that the closest point is the corresponding point and lead to sensitivity to the outlier and initial pose, while they have poor computational efficiency due to the closest point computation. Most implementations of the ICP algorithm attempt to deal with this issue by modifying correspondence or adding coarse registration. However, this leads to sacrificing the accuracy rate or adding the algorithm complexity. This paper proposes a hierarchical optimization approach that includes improved voxel filter and Multi-Scale Voxelized Generalized-ICP (MVGICP) for 3D point cloud registration. By combining traditional voxel sampling with point density, the outlier filtering and downsample are successfully realized. Through multi-scale iteration and avoiding closest point computation, MVGICP solves the local minimum problem and optimizes the operation efficiency. The experimental results demonstrate that the proposed algorithm is superior to the current algorithms in terms of outlier filtering and registration performance. |
关键词 | 3D point cloud registration improved voxel filter multi-scale voxelized GICP |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
资助项目 | Innovation Project of Shanghai Institute of Technical Physics, Chinese Academy of Sciences[X-209] |
WOS研究方向 | Chemistry ; Engineering ; Instruments & Instrumentation |
WOS类目 | Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation |
WOS记录号 | WOS:000597527800001 |
出版者 | MDPI |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/124911 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
通讯作者 | Sun, Shengli |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China 2.Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China 3.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Huikai,Zhang, Yue,Lei, Linjian,et al. Hierarchical Optimization of 3D Point Cloud Registration[J]. SENSORS,2020,20(23). |
APA | Liu, Huikai,Zhang, Yue,Lei, Linjian,Xie, Hui,Li, Yan,&Sun, Shengli.(2020).Hierarchical Optimization of 3D Point Cloud Registration.SENSORS,20(23). |
MLA | Liu, Huikai,et al."Hierarchical Optimization of 3D Point Cloud Registration".SENSORS 20.23(2020). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。