消息
×
loading..
Hierarchical Optimization of 3D Point Cloud Registration
2020-12
发表期刊SENSORS (IF:3.4[JCR-2023],3.7[5-Year])
卷号20期号:23
发表状态已发表
DOI10.3390/s20236999
摘要Rigid registration of 3D point clouds is the key technology in robotics and computer vision. Most commonly, the iterative closest point (ICP) and its variants are employed for this task. These methods assume that the closest point is the corresponding point and lead to sensitivity to the outlier and initial pose, while they have poor computational efficiency due to the closest point computation. Most implementations of the ICP algorithm attempt to deal with this issue by modifying correspondence or adding coarse registration. However, this leads to sacrificing the accuracy rate or adding the algorithm complexity. This paper proposes a hierarchical optimization approach that includes improved voxel filter and Multi-Scale Voxelized Generalized-ICP (MVGICP) for 3D point cloud registration. By combining traditional voxel sampling with point density, the outlier filtering and downsample are successfully realized. Through multi-scale iteration and avoiding closest point computation, MVGICP solves the local minimum problem and optimizes the operation efficiency. The experimental results demonstrate that the proposed algorithm is superior to the current algorithms in terms of outlier filtering and registration performance.
关键词3D point cloud registration improved voxel filter multi-scale voxelized GICP
URL查看原文
收录类别SCI ; SCIE ; EI
语种英语
资助项目Innovation Project of Shanghai Institute of Technical Physics, Chinese Academy of Sciences[X-209]
WOS研究方向Chemistry ; Engineering ; Instruments & Instrumentation
WOS类目Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号WOS:000597527800001
出版者MDPI
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/124911
专题信息科学与技术学院_硕士生
信息科学与技术学院_博士生
通讯作者Sun, Shengli
作者单位
1.Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China
2.Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
3.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
推荐引用方式
GB/T 7714
Liu, Huikai,Zhang, Yue,Lei, Linjian,et al. Hierarchical Optimization of 3D Point Cloud Registration[J]. SENSORS,2020,20(23).
APA Liu, Huikai,Zhang, Yue,Lei, Linjian,Xie, Hui,Li, Yan,&Sun, Shengli.(2020).Hierarchical Optimization of 3D Point Cloud Registration.SENSORS,20(23).
MLA Liu, Huikai,et al."Hierarchical Optimization of 3D Point Cloud Registration".SENSORS 20.23(2020).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Huikai]的文章
[Zhang, Yue]的文章
[Lei, Linjian]的文章
百度学术
百度学术中相似的文章
[Liu, Huikai]的文章
[Zhang, Yue]的文章
[Lei, Linjian]的文章
必应学术
必应学术中相似的文章
[Liu, Huikai]的文章
[Zhang, Yue]的文章
[Lei, Linjian]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3390@s20236999.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。