| |||||||
ShanghaiTech University Knowledge Management System
Latent variable sentiment grammar | |
2020 | |
会议录名称 | ACL 2019 - 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE |
页码 | 4642-4651 |
发表状态 | 已发表 |
摘要 | Neural models have been investigated for sentiment classification over constituent trees. They learn phrase composition automatically by encoding tree structures but do not explicitly model sentiment composition, which requires to encode sentiment class labels. To this end, we investigate two formalisms with deep sentiment representations that capture sentiment subtype expressions by latent variables and Gaussian mixture vectors, respectively. Experiments on Stanford Sentiment Treebank (SST) show the effectiveness of sentiment grammar over vanilla neural encoders. Using ELMo embeddings, our method gives the best results on this benchmark. © 2019 Association for Computational Linguistics |
会议录编者/会议主办者 | ACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference |
关键词 | Computational linguistics Encoding (symbols) Forestry Signal encoding Trees (mathematics)Class labels Encoding tree Gaussian mixtures Latent variable Neural models Sentiment classification Stanford Treebanks |
会议名称 | 57th Annual Meeting of the Association for Computational Linguistics, ACL 2019 |
会议地点 | Florence, Italy |
会议日期 | July 28, 2019 - August 2, 2019 |
收录类别 | EI ; CPCI ; ISSHP ; CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[] |
WOS研究方向 | Computer Science ; Linguistics |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Linguistics |
WOS记录号 | WOS:000493046107015 |
出版者 | Association for Computational Linguistics (ACL) |
EI入藏号 | 20201808605277 |
EI主题词 | Classification (of information) ; Computational linguistics ; Encoding (symbols) ; Forestry ; Signal encoding ; Trees (mathematics) |
EI分类号 | Information Theory and Signal Processing:716.1 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Data Processing and Image Processing:723.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/124520 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_屠可伟组 信息科学与技术学院_博士生 |
通讯作者 | Zhang, Liwen |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China; 2.Institute of Advanced Technology, Westlake Institute for Advanced Study, China; 3.School of Engineering, Westlake University, Hangzhou, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhang, Liwen,Tu, Kewei,Zhang, Yue. Latent variable sentiment grammar[C]//ACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference:Association for Computational Linguistics (ACL),2020:4642-4651. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。