消息
×
loading..
Latent variable sentiment grammar
2020
会议录名称ACL 2019 - 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE
页码4642-4651
发表状态已发表
摘要

Neural models have been investigated for sentiment classification over constituent trees. They learn phrase composition automatically by encoding tree structures but do not explicitly model sentiment composition, which requires to encode sentiment class labels. To this end, we investigate two formalisms with deep sentiment representations that capture sentiment subtype expressions by latent variables and Gaussian mixture vectors, respectively. Experiments on Stanford Sentiment Treebank (SST) show the effectiveness of sentiment grammar over vanilla neural encoders. Using ELMo embeddings, our method gives the best results on this benchmark. © 2019 Association for Computational Linguistics

会议录编者/会议主办者ACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference
关键词Computational linguistics Encoding (symbols) Forestry Signal encoding Trees (mathematics)Class labels Encoding tree Gaussian mixtures Latent variable Neural models Sentiment classification Stanford Treebanks
会议名称57th Annual Meeting of the Association for Computational Linguistics, ACL 2019
会议地点Florence, Italy
会议日期July 28, 2019 - August 2, 2019
收录类别EI ; CPCI ; ISSHP ; CPCI-S
语种英语
资助项目National Natural Science Foundation of China[]
WOS研究方向Computer Science ; Linguistics
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Linguistics
WOS记录号WOS:000493046107015
出版者Association for Computational Linguistics (ACL)
EI入藏号20201808605277
EI主题词Classification (of information) ; Computational linguistics ; Encoding (symbols) ; Forestry ; Signal encoding ; Trees (mathematics)
EI分类号Information Theory and Signal Processing:716.1 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Data Processing and Image Processing:723.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/124520
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_屠可伟组
信息科学与技术学院_博士生
通讯作者Zhang, Liwen
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China;
2.Institute of Advanced Technology, Westlake Institute for Advanced Study, China;
3.School of Engineering, Westlake University, Hangzhou, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhang, Liwen,Tu, Kewei,Zhang, Yue. Latent variable sentiment grammar[C]//ACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference:Association for Computational Linguistics (ACL),2020:4642-4651.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Liwen]的文章
[Tu, Kewei]的文章
[Zhang, Yue]的文章
百度学术
百度学术中相似的文章
[Zhang, Liwen]的文章
[Tu, Kewei]的文章
[Zhang, Yue]的文章
必应学术
必应学术中相似的文章
[Zhang, Liwen]的文章
[Tu, Kewei]的文章
[Zhang, Yue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。