ShanghaiTech University Knowledge Management System
Efficient FPGA Implementation of K-Nearest-Neighbor Search Algorithm for 3D LIDAR Localization and Mapping in Smart Vehicles | |
2020 | |
发表期刊 | IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS (IF:4.0[JCR-2023],3.7[5-Year]) |
ISSN | 1558-3791 |
卷号 | 67期号:9页码:1644-1648 |
发表状态 | 已发表 |
DOI | 10.1109/TCSII.2020.3013758 |
摘要 | K-Nearest-Neighbor search (KNN) has been extensively used in the localization and mapping based on 3D laser point clouds in smart vehicles. Considering the real-time requirement of localization and stringent battery constraint in smart vehicles, it is a great challenge to develop highly energy-efficient KNN implementations. Unfortunately, previous KNN implementations either cannot efficiently build search data structures or cannot search efficiently in massive and unevenly distributed point clouds. To solve the issue, we propose a new framework to optimize the implementation of KNN on FPGAs. First, we propose a novel data structure with a spatial subdivision method, which can be built efficiently even for massive point clouds. Second, based on our data structure, we propose a KNN search algorithm which is able to search in unevenly distributed point clouds efficiently. We have implemented the new framework on both FPGA and GPU. Energy efficiency results show that our proposed method is on average 2.1 times and 6.2 times higher than the state-of-the-art implementations of KNN on FPGA and GPU platform, respectively. |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI ; CPCI |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/123586 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_哈亚军组 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China 3.School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China 4.Universite Paris-Est, Paris, France |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Hao Sun,Xinzhe Liu,Qi Deng,et al. Efficient FPGA Implementation of K-Nearest-Neighbor Search Algorithm for 3D LIDAR Localization and Mapping in Smart Vehicles[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS,2020,67(9):1644-1648. |
APA | Hao Sun,Xinzhe Liu,Qi Deng,Weixiong Jiang,Shaobo Luo,&Yajun Ha.(2020).Efficient FPGA Implementation of K-Nearest-Neighbor Search Algorithm for 3D LIDAR Localization and Mapping in Smart Vehicles.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS,67(9),1644-1648. |
MLA | Hao Sun,et al."Efficient FPGA Implementation of K-Nearest-Neighbor Search Algorithm for 3D LIDAR Localization and Mapping in Smart Vehicles".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS 67.9(2020):1644-1648. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Hao Sun]的文章 |
[Xinzhe Liu]的文章 |
[Qi Deng]的文章 |
百度学术 |
百度学术中相似的文章 |
[Hao Sun]的文章 |
[Xinzhe Liu]的文章 |
[Qi Deng]的文章 |
必应学术 |
必应学术中相似的文章 |
[Hao Sun]的文章 |
[Xinzhe Liu]的文章 |
[Qi Deng]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。