Visual Tracking With Multiview Trajectory Prediction
2020
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING (IF:10.8[JCR-2023],12.1[5-Year])
ISSN1941-0042
卷号29页码:8355-8367
发表状态已发表
DOI10.1109/TIP.2020.3014952
摘要Recent progresses in visual tracking have greatly improved the tracking performance. However, challenges such as occlusion and view change remain obstacles in real world deployment. A natural solution to these challenges is to use multiple cameras with multiview inputs, though existing systems are mostly limited to specific targets (e.g. human), static cameras, and/or require camera calibration. To break through these limitations, we propose a generic multiview tracking (GMT) framework that allows camera movement, while requiring neither specific object model nor camera calibration. A key innovation in our framework is a cross-camera trajectory prediction network (TPN), which implicitly and dynamically encodes camera geometric relations, and hence addresses missing target issues such as occlusion. Moreover, during tracking, we assemble information across different cameras to dynamically update a novel collaborative correlation filter (CCF), which is shared among cameras to achieve robustness against view change. The two components are integrated into a correlation filter tracking framework, where features are trained offline using existing single view tracking datasets. For evaluation, we first contribute a new generic multiview tracking dataset (GMTD) with careful annotations, and then run experiments on the GMTD and CAMPUS datasets. The proposed GMT algorithm shows clear advantages in terms of robustness over state-of-the-art ones.
URL查看原文
收录类别SCI ; EI ; SCIE
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/122662
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_PI研究组_高盛华组
作者单位
1.Yoke Intelligence, Shanghai, China
2.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
3.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
4.Computer Science Department, Stony Brook University, Stony Brook, USA
5.School of Computing, University of Leeds, Leeds, U.K.
6.State Key Laboratory of Software Development Environment, Beijing Advanced Innovation Center for Big Data and Brain Computing, School of Computer Science and Engineering, Beihang University, Beijing, China
第一作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Minye Wu,Haibin Ling,Ning Bi,et al. Visual Tracking With Multiview Trajectory Prediction[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2020,29:8355-8367.
APA Minye Wu.,Haibin Ling.,Ning Bi.,Shenghua Gao.,Qiang Hu.,...&Jingyi Yu.(2020).Visual Tracking With Multiview Trajectory Prediction.IEEE TRANSACTIONS ON IMAGE PROCESSING,29,8355-8367.
MLA Minye Wu,et al."Visual Tracking With Multiview Trajectory Prediction".IEEE TRANSACTIONS ON IMAGE PROCESSING 29(2020):8355-8367.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Minye Wu]的文章
[Haibin Ling]的文章
[Ning Bi]的文章
百度学术
百度学术中相似的文章
[Minye Wu]的文章
[Haibin Ling]的文章
[Ning Bi]的文章
必应学术
必应学术中相似的文章
[Minye Wu]的文章
[Haibin Ling]的文章
[Ning Bi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。