| |||||||
ShanghaiTech University Knowledge Management System
LGNN: A Context-aware Line Segment Detector | |
2020-07-26 | |
会议录名称 | 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2020 |
发表状态 | 已发表 |
DOI | 10.1145/3394171.3413784 |
摘要 | We present a novel real-time line segment detection scheme called Line Graph Neural Network (LGNN). Existing approaches require a computationally expensive verification or postprocessing step. Our LGNN employs a deep convolutional neural network (DCNN) for proposing line segment directly, with a graph neural network (GNN) module for reasoning their connectivities. Specifically, LGNN exploits a new quadruplet representation for each line segment where the GNN module takes the predicted candidates as vertexes and constructs a sparse graph to enforce structural context. Compared with the state-of-the-art, LGNN achieves near real-time performance without compromising accuracy. LGNN further enables time-sensitive 3D applications. When a 3D point cloud is accessible, we present a multi-modal line segment classification technique for extracting a 3D wireframe of the environment robustly and efficiently. |
关键词 | line segment detection quadruplet graph neural network real-time |
会议地点 | Seattle, WA, USA |
会议日期 | October 12–16, 2020 |
学科门类 | 工学::计算机科学与技术(可授工学、理学学位) |
收录类别 | EI ; CPCI ; CPCI-S |
语种 | 英语 |
出版者 | Association for Computing Machinery, Inc |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/122533 |
专题 | 信息科学与技术学院_本科生 信息科学与技术学院_PI研究组_何旭明组 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
通讯作者 | Meng, Quan; Yu, Jingyi |
作者单位 | Shanghai Engineering Research Center of Intelligent Vision and Imaging, School of Information Science and Technology, ShanghaiTech University |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Meng, Quan,Zhang, Jiakai,Hu, Qiang,et al. LGNN: A Context-aware Line Segment Detector[C]:Association for Computing Machinery, Inc,2020. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。