Sparse Optimization for Green Edge AI Inference
2020-03
发表期刊JOURNAL OF COMMUNICATIONS AND INFORMATION NETWORKS
ISSN2509-3312
EISSN2509-3312
卷号5期号:1页码:1-15
发表状态已发表
DOI10.23919/JCIN.2020.9055106
摘要

With the rapid upsurge of deep learning tasks at the network edge, effective edge artificial intelligence (AI) inference becomes critical to provide low-latency intelligent services for mobile users via leveraging the edge computing capability. In such scenarios, energy efficiency becomes a primary concern. In this paper, we present a joint inference task selection and downlink beamforming strategy to achieve energy-efficient edge AI inference through minimizing the overall power consumption consisting of both computation and transmission power consumption, yielding a mixed combinatorial optimization problem. By exploiting the inherent connections between the set of task selection and group sparsity structural transmit beamforming vector, we reformulate the optimization as a group sparse beamforming problem. To solve this challenging problem, we propose a log-sum function based three-stage approach. By adopting the log-sum function to enhance the group sparsity, a proximal iteratively reweighted algorithm is developed. Furthermore, we establish the global convergence analysis and provide the ergodic worst-case convergence rate for this algorithm. Simulation results will demonstrate the effectiveness of the proposed approach for improving energy efficiency in edge AI inference systems.

关键词AI edge inference cooperative transmission energy efficiency group sparse beamforming proximal iteratively reweighted algorithm Inference engines Beamforming Combinatorial optimization Electric power utilization Deep learning Iterative methods Cooperative transmission Edge inference Group sparse Group sparse beamforming Group sparsities Learning tasks Network edges Proximal iteratively reweighted algorithm Sparse optimizations Task selection
URL查看原文
收录类别CSCD ; EI
语种英语
WOS研究方向Engineering
WOS类目ENGINEERING ELECTRICAL ELECTRONIC
CSCD记录号CSCD:6681622
出版者Posts and Telecom Press Co Ltd
EI入藏号20215011303748
EI主题词Energy efficiency
EI分类号461.4 Ergonomics and Human Factors Engineering ; 525.2 Energy Conservation ; 706.1 Electric Power Systems ; 711.2 Electromagnetic Waves in Relation to Various Structures ; 723.4.1 Expert Systems ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory ; 921.5 Optimization Techniques ; 921.6 Numerical Methods
原始文献类型Journals
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/122207
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_王浩组
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_硕士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; University of Chinese Academy of Sciences, Beijing 100049, China
2.School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
3.Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
4.Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong 999077, China; Peng Cheng Laboratory, Shenzhen 518055, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Xiangyu Yang,Sheng Hua,Yuanming Shi,et al. Sparse Optimization for Green Edge AI Inference[J]. JOURNAL OF COMMUNICATIONS AND INFORMATION NETWORKS,2020,5(1):1-15.
APA Xiangyu Yang,Sheng Hua,Yuanming Shi,Hao Wang,Jun Zhang,&Khaled B. Letaief.(2020).Sparse Optimization for Green Edge AI Inference.JOURNAL OF COMMUNICATIONS AND INFORMATION NETWORKS,5(1),1-15.
MLA Xiangyu Yang,et al."Sparse Optimization for Green Edge AI Inference".JOURNAL OF COMMUNICATIONS AND INFORMATION NETWORKS 5.1(2020):1-15.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xiangyu Yang]的文章
[Sheng Hua]的文章
[Yuanming Shi]的文章
百度学术
百度学术中相似的文章
[Xiangyu Yang]的文章
[Sheng Hua]的文章
[Yuanming Shi]的文章
必应学术
必应学术中相似的文章
[Xiangyu Yang]的文章
[Sheng Hua]的文章
[Yuanming Shi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。