消息
×
loading..
OSLNet: Deep Small-Sample Classification With an Orthogonal Softmax Layer
2020
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING (IF:10.8[JCR-2023],12.1[5-Year])
ISSN1941-0042
卷号29页码:6482-6495
发表状态已发表
DOI10.1109/TIP.2020.2990277
摘要A deep neural network of multiple nonlinear layers forms a large function space, which can easily lead to overfitting when it encounters small-sample data. To mitigate overfitting in small-sample classification, learning more discriminative features from small-sample data is becoming a new trend. To this end, this paper aims to find a subspace of neural networks that can facilitate a large decision margin. Specifically, we propose the Orthogonal Softmax Layer (OSL), which makes the weight vectors in the classification layer remain orthogonal during both the training and test processes. The Rademacher complexity of a network using the OSL is only $\frac {1}{K}$ , where $K$ is the number of classes, of that of a network using the fully connected classification layer, leading to a tighter generalization error bound. Experimental results demonstrate that the proposed OSL has better performance than the methods used for comparison on four small-sample benchmark datasets, as well as its applicability to large-sample datasets. Codes are available at: https://github.com/dongliangchang/OSLNet.
关键词Training Optimization Training data Deep learning Decorrelation Biological neural networks
URL查看原文
收录类别EI ; SCIE ; SCI
原始文献类型Journals
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/122198
专题信息科学与技术学院_PI研究组_虞晶怡组
作者单位
1.School of Computer and Communication, Lanzhou University of Technology, Lanzhou, China
2.Pattern Recognition and Intelligent System Laboratory, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
3.Department of Electronic Systems, Aalborg University, Aalborg, Denmark
4.Department of Statistical Science, University College London, London, U.K.
5.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
推荐引用方式
GB/T 7714
Xiaoxu Li,Dongliang Chang,Zhanyu Ma,et al. OSLNet: Deep Small-Sample Classification With an Orthogonal Softmax Layer[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2020,29:6482-6495.
APA Xiaoxu Li.,Dongliang Chang.,Zhanyu Ma.,Zheng-Hua Tan.,Jing-Hao Xue.,...&Jun Guo.(2020).OSLNet: Deep Small-Sample Classification With an Orthogonal Softmax Layer.IEEE TRANSACTIONS ON IMAGE PROCESSING,29,6482-6495.
MLA Xiaoxu Li,et al."OSLNet: Deep Small-Sample Classification With an Orthogonal Softmax Layer".IEEE TRANSACTIONS ON IMAGE PROCESSING 29(2020):6482-6495.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xiaoxu Li]的文章
[Dongliang Chang]的文章
[Zhanyu Ma]的文章
百度学术
百度学术中相似的文章
[Xiaoxu Li]的文章
[Dongliang Chang]的文章
[Zhanyu Ma]的文章
必应学术
必应学术中相似的文章
[Xiaoxu Li]的文章
[Dongliang Chang]的文章
[Zhanyu Ma]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TIP.2020.2990277.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。