ShanghaiTech University Knowledge Management System
Communication-Efficient Edge AI: Algorithms and Systems | |
2020 | |
发表期刊 | IEEE COMMUNICATIONS SURVEYS & TUTORIALS |
ISSN | 2373-745X |
卷号 | 22期号:4 |
DOI | 10.1109/COMST.2020.3007787 |
摘要 | Artificial intelligence (AI) has achieved remarkable breakthroughs in a wide range of fields, ranging from speech processing, image classification to drug discovery. This is driven by the explosive growth of data, advances in machine learning (especially deep learning), and the easy access to powerful computing resources. Particularly, the wide scale deployment of edge devices (e.g., IoT devices) generates an unprecedented scale of data, which provides the opportunity to derive accurate models and develop various intelligent applications at the network edge. However, such enormous data cannot all be sent to the cloud for processing, due to the varying channel quality, traffic congestion and/or privacy concerns, and the enormous energy consumption. By pushing inference and training processes of AI models to edge nodes, edge AI has emerged as a promising alternative. AI at the edge requires close cooperation among edge devices, such as smart phones and smart vehicles, and edge servers at the wireless access points and base stations, which however result in heavy communication overheads. In this paper, we present a comprehensive survey of the recent developments in various techniques for overcoming these communication challenges. Specifically, we first identify key communication challenges in edge AI systems. We then introduce communication-efficient techniques, from both algorithmic and system perspectives for training and inference tasks at the network edge. Potential future research directions are also highlighted. |
URL | 查看原文 |
收录类别 | SCIE ; EI |
来源库 | IEEE |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/122182 |
专题 | 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China 3.University of Chinese Academy of Sciences, Beijing, China 4.Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong 5.Peng Cheng Laboratory, Shenzhen, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yuanming Shi,Kai Yang,Tao Jiang,et al. Communication-Efficient Edge AI: Algorithms and Systems[J]. IEEE COMMUNICATIONS SURVEYS & TUTORIALS,2020,22(4). |
APA | Yuanming Shi,Kai Yang,Tao Jiang,Jun Zhang,&Khaled B. Letaief.(2020).Communication-Efficient Edge AI: Algorithms and Systems.IEEE COMMUNICATIONS SURVEYS & TUTORIALS,22(4). |
MLA | Yuanming Shi,et al."Communication-Efficient Edge AI: Algorithms and Systems".IEEE COMMUNICATIONS SURVEYS & TUTORIALS 22.4(2020). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yuanming Shi]的文章 |
[Kai Yang]的文章 |
[Tao Jiang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yuanming Shi]的文章 |
[Kai Yang]的文章 |
[Tao Jiang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yuanming Shi]的文章 |
[Kai Yang]的文章 |
[Tao Jiang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。