Exact muffin-tin orbital based fully relativistic simulation of device materials: Electronic charge and spin current
2020-07-02
发表期刊PHYSICAL REVIEW B
ISSN2469-9950
EISSN2469-9969
卷号102期号:3
发表状态已发表
DOI10.1103/PhysRevB.102.035405
摘要

We report the implementation of the fully relativistic exact muffin-tin orbital (EMTO) method for both first-principles electronic structure and quantum transport simulation of magnetic and nonmagnetic device materials. We consider a device-material system containing the inevitable atomic disorders in contact with different electrode materials. The Kohn-Sham Dirac equations for both cases with and without spin polarization are self-consistently solved for the central device-material system with the Green's function method. The fully relativistic charge-current density, conventional Pauli spin current density, and transmission coefficient are formulated with the nonequilibrium Green's function technique. To treat the influence of disordered defects/impurities, we combine the nonequilibrium Green's function in the Keldysh space with the coherent potential approximation, and account for the multiple disorder scattering by vertex corrections to a two-Green's-function correlator to calculate the disorder-averaged charge and spin current density. As a demonstration of the present implementation, we calculate the electronic structure of the bulk Pt, Co, and HgTe and Rashba-type surface states of Au and Ag/Ag2Bi1 alloy surfaces. We find that the EMTO electronic structures of all the calculated systems agree well with the results of the projector-augmented wave method. The electronic charge and spin transport implementations are tested with perfect and disordered Cu/Co/Pt/Cu junctions. The important effects of interface and atomic disorders are illustrated for the spin transport in the presence of relativistic effects. The implementation of the fully relativistic EMTO-based device-material simulation provides an important tool for analyzing both the charge and spin transport through nanostructures and materials, significantly extending the capability of first-principles material design for spintronic device applications.

收录类别SCI ; SCIE ; EI
资助项目NSFC[11804266][11874265] ; Innovation Program of the Shanghai Municipal Education Commission[15ZZ114]
WOS研究方向Materials Science ; Physics
WOS类目Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号WOS:000544846500005
出版者AMER PHYSICAL SOC
WOS关键词ANISOTROPY ; TRANSPORT ; ALLOYS ; ENERGY
原始文献类型Article
引用统计
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/122046
专题物质科学与技术学院_硕士生
物质科学与技术学院_PI研究组_柯友启组
物质科学与技术学院_本科生
物质科学与技术学院_博士生
通讯作者Ke, Youqi
作者单位
1.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
3.Xi An Jiao Tong Univ, Ctr Spintron & Quantum Syst, State Key Lab Mech Behav Mat, 28 Xianning West Rd, Xian 710049, Shaanxi, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
第一作者单位物质科学与技术学院
通讯作者单位物质科学与技术学院
第一作者的第一单位物质科学与技术学院
推荐引用方式
GB/T 7714
Chen, Zhiyi,Zhang, Qingyun,Zhang, Yu,et al. Exact muffin-tin orbital based fully relativistic simulation of device materials: Electronic charge and spin current[J]. PHYSICAL REVIEW B,2020,102(3).
APA Chen, Zhiyi,Zhang, Qingyun,Zhang, Yu,Wang, Lei,Sang, Mankun,&Ke, Youqi.(2020).Exact muffin-tin orbital based fully relativistic simulation of device materials: Electronic charge and spin current.PHYSICAL REVIEW B,102(3).
MLA Chen, Zhiyi,et al."Exact muffin-tin orbital based fully relativistic simulation of device materials: Electronic charge and spin current".PHYSICAL REVIEW B 102.3(2020).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Zhiyi]的文章
[Zhang, Qingyun]的文章
[Zhang, Yu]的文章
百度学术
百度学术中相似的文章
[Chen, Zhiyi]的文章
[Zhang, Qingyun]的文章
[Zhang, Yu]的文章
必应学术
必应学术中相似的文章
[Chen, Zhiyi]的文章
[Zhang, Qingyun]的文章
[Zhang, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。