| |||||||
ShanghaiTech University Knowledge Management System
Super-Resolution Coding Defense Against Adversarial Examples | |
2020-06 | |
会议录名称 | PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL |
页码 | 189-197 |
发表状态 | 已发表 |
DOI | 10.1145/3372278.3390689 |
摘要 | Deep neural networks have achieved state-of-the-art performance in many fields including image classification. However, recent studies show these models are vulnerable to adversarial examples formed by adding small but intentional perturbations to clean examples. In this paper, we introduce a significant defense method against adversarial examples. The key idea is to leverage a superresolution coding (SR-coding) network to eliminate noise from adversarial examples. Furthermore, to boost the effect of defending noise, we propose a novel hybrid approach that incorporates SRcoding and adversarial training to train robust neural networks. Experiments on benchmark datasets demonstrate the effectiveness of our method against both the state-of-the-art white-box attacks and black-box attacks. The proposed approach significantly improves defense performance and achieves up to 41.26% improvement based on the accuracy by ResNet18 on PGD white-box attack. |
关键词 | Deep Learning Adversarial Attack Super-Resolution Generative Adversarial Network |
会议名称 | ICMR 2020 |
会议地点 | Dublin, Ireland |
会议日期 | October 26–29, 2020, |
收录类别 | EI |
语种 | 英语 |
出版者 | Association for Computing Machinery, Inc |
EI入藏号 | 20202608878102 |
EI主题词 | Deep neural networks ; Optical resolving power |
EI分类号 | Computer Software, Data Handling and Applications:723 ; Light/Optics:741.1 |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/121645 |
专题 | 信息科学与技术学院_特聘教授组_蔡宁组 信息科学与技术学院_PI研究组_王浩组 信息科学与技术学院_硕士生 |
通讯作者 | Hao Wang |
作者单位 | 1.ShanghaiTech University, China 2.Shanghai Institute of Microsystem and Information Technology 3.University of Chinese Academy of Sciences 4.NEC Laboratories, America |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Yanjie Chen,Likun Cai,Wei Cheng,et al. Super-Resolution Coding Defense Against Adversarial Examples[C]:Association for Computing Machinery, Inc,2020:189-197. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yanjie Chen]的文章 |
[Likun Cai]的文章 |
[Wei Cheng]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yanjie Chen]的文章 |
[Likun Cai]的文章 |
[Wei Cheng]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yanjie Chen]的文章 |
[Likun Cai]的文章 |
[Wei Cheng]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。