Transferable contrastive network for generalized zero-shot learning
2019
会议录名称17TH IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV 2019
ISSN1550-5499
卷号2019-October
页码9764-9773
发表状态已发表
DOI10.1109/ICCV.2019.00986
摘要Zero-shot learning (ZSL) is a challenging problem that aims to recognize the target categories without seen data, where semantic information is leveraged to transfer knowledge from some source classes. Although ZSL has made great progress in recent years, most existing approaches are easy to overfit the sources classes in generalized zero-shot learning (GZSL) task, which indicates that they learn little knowledge about target classes. To tackle such problem, we propose a novel Transferable Contrastive Network (TCN) that explicitly transfers knowledge from the source classes to the target classes. It automatically contrasts one image with different classes to judge whether they are consistent or not. By exploiting the class similarities to make knowledge transfer from source images to similar target classes, our approach is more robust to recognize the target images. Experiments on five benchmark datasets show the superiority of our approach for GZSL.
© 2019 IEEE.
会议地点Seoul, Korea, Republic of
会议日期27 Oct.-2 Nov. 2019
URL查看原文
收录类别EI ; CPCI-S ; CPCI
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20201208326828
EI主题词Computer vision ; Knowledge management ; Semantics
EI分类号Computer Applications:723.5
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/120820
专题信息科学与技术学院_博士生
信息科学与技术学院_特聘教授组_陈熙霖组
通讯作者Jiang, Huajie
作者单位
1.Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing; 100190, China
2.University of Chinese Academy of Sciences, Beijing; 100049, China
3.Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai; 200050, China
4.School of Information Science and Technology, ShanghaiTech University, Shanghai; 200031, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Jiang, Huajie,Wang, Ruiping,Shan, Shiguang,et al. Transferable contrastive network for generalized zero-shot learning[C]:Institute of Electrical and Electronics Engineers Inc.,2019:9764-9773.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiang, Huajie]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
百度学术
百度学术中相似的文章
[Jiang, Huajie]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
必应学术
必应学术中相似的文章
[Jiang, Huajie]的文章
[Wang, Ruiping]的文章
[Shan, Shiguang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ICCV.2019.00986.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。