| |||||||
ShanghaiTech University Knowledge Management System
Federated Machine Learning for Intelligent IoT via Reconfigurable Intelligent Surface | |
2020-09 | |
发表期刊 | IEEE NETWORK (IF:6.8[JCR-2023],8.5[5-Year]) |
ISSN | 0890-8044 |
卷号 | 34期号:5页码:16-22 |
发表状态 | 已发表 |
DOI | 10.1109/MNET.011.2000045 |
摘要 | Intelligent Internet of Things (IoT) will be transformative with the advancement of artificial intelligence and high-dimensional data analysis, shifting from "connected things" to "connected intelligence." This shall unleash the full potential of intelligent IoT in a plethora of exciting applications, such as self-driving cars, unmanned aerial vehicles, healthcare, robotics, and supply chain finance. These applications drive the need to develop revolutionary computation, communication, and artificial intelligence technologies that can make low-latency decisions with massive realtime data. To this end, federated machine learning, as a disruptive technology, has emerged to distill intelligence from the data at the network edge, while guaranteeing device privacy and data security. However, the limited communication bandwidth is a key bottleneck of model aggregation for federated machine learning over radio channels. In this article, we shall develop an overthe- air computation-based communication-efficient federated machine learning framework for intelligent IoT networks via exploiting the waveform superposition property of a multi-access channel. Reconfigurable intelligent surface is further leveraged to reduce the model aggregation error via enhancing the signal strength by reconfiguring the wireless propagation environments. |
关键词 | Internet of Things Machine learning Computational modeling Servers Data models Atmospheric modeling |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
资助项目 | National Key Research and Development Program[2018YFA0701601] ; National Natural Science Foundation of China (NSFC)[61601290][61971286][61771017] |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
WOS类目 | Computer Science, Hardware & Architecture ; Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000591303900003 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/119203 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_PI研究组_周勇组 |
作者单位 | 1.ShanghaiTech University, Shanghai, China 2.Xiamen University, Xiamen, China 3.Tsinghua University, Beijing, China |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Kai Yang,Yuanming Shi,Yong Zhou,et al. Federated Machine Learning for Intelligent IoT via Reconfigurable Intelligent Surface[J]. IEEE NETWORK,2020,34(5):16-22. |
APA | Kai Yang,Yuanming Shi,Yong Zhou,Zhanpeng Yang,Liqun Fu,&Wei Chen.(2020).Federated Machine Learning for Intelligent IoT via Reconfigurable Intelligent Surface.IEEE NETWORK,34(5),16-22. |
MLA | Kai Yang,et al."Federated Machine Learning for Intelligent IoT via Reconfigurable Intelligent Surface".IEEE NETWORK 34.5(2020):16-22. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Kai Yang]的文章 |
[Yuanming Shi]的文章 |
[Yong Zhou]的文章 |
百度学术 |
百度学术中相似的文章 |
[Kai Yang]的文章 |
[Yuanming Shi]的文章 |
[Yong Zhou]的文章 |
必应学术 |
必应学术中相似的文章 |
[Kai Yang]的文章 |
[Yuanming Shi]的文章 |
[Yong Zhou]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。