ShanghaiTech University Knowledge Management System
Photo-Realistic Facial Details Synthesis From Single Image | |
2019-10 | |
会议录名称 | 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV)
![]() |
ISSN | 1550-5499 |
页码 | 9428-9438 |
发表状态 | 已发表 |
DOI | 10.1109/ICCV.2019.00952 |
摘要 | We present a single-image 3D face synthesis technique that can handle challenging facial expressions while recovering fine geometric details. Our technique employs expression analysis for proxy face geometry generation and combines supervised and unsupervised learning for facial detail synthesis. On proxy generation, we conduct emotion prediction to determine a new expression-informed proxy. On detail synthesis, we present a Deep Facial Detail Net (DFDN) based on Conditional Generative Adversarial Net (CGAN) that employs both geometry and appearance loss functions. For geometry, we capture 366 high-quality 3D scans from 122 different subjects under 3 facial expressions. For appearance, we use additional 163K in-the-wild face images and apply image-based rendering to accommodate lighting variations. Comprehensive experiments demonstrate that our framework can produce high-quality 3D faces with realistic details under challenging facial expressions. |
关键词 | Three-dimensional displays Face Geometry Shape Cameras Image reconstruction Two dimensional displays |
会议地点 | Seoul, Korea, Republic of |
会议日期 | 27 Oct.-2 Nov. 2019 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
原始文献类型 | Conferences |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/118978 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 |
作者单位 | 1.shanghaitech 2.ShanghaiTech University 3.Shanghaitech University 4.Edinburgh Napier University and Disney Research 5.Shanghai Tech University |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Anpei Chen,Zhang Chen,Guli Zhang,et al. Photo-Realistic Facial Details Synthesis From Single Image[C],2019:9428-9438. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。