ShanghaiTech University Knowledge Management System
Towards Efficient Information-Theoretic Function Secret Sharing | |
2020 | |
发表期刊 | IEEE ACCESS (IF:3.4[JCR-2023],3.7[5-Year]) |
ISSN | 2169-3536 |
卷号 | 8页码:28512-28523 |
发表状态 | 已发表 |
DOI | 10.1109/ACCESS.2020.2971722 |
摘要 | A (t; r)-function secret sharing ((t; r)-FSS) scheme allows a dealer to secret-share a function f among r parties as r secret keys k 1; : : :; kr such that for any input x the parties can compute r output shares that allow the reconstruction of f (x) but any t of the parties cannot learn any information about f. FSS schemes for point functions have been constructed under the name of distributed point functions (DPFs). The existing DPFs are computationally secure and based on the existence of PRGs or OWFs. As a result, the protocols where DPFs work as building blocks are computationally secure as well. In this paper, we study information-theoretically secure (t; r)-FSS (called (t; r)-itFSS) and propose a generic transformation from information-theoretic private information retrieval (PIR) schemes to itFSS schemes for point functions. We measure the efciency of itFSS with its communication complexity, which can be dened as the total length of the secret keys and the output shares, maximized over the choices of f and x. By instantiating the generic transformation, we obtain (t; r)-itFSS schemes for a variety of choices of (t; r), which have sublinear (in the functions' domain size) communication complexity. How to make sure that the parties' shares of f (x) do not reveal more information than what needed to compute f (x) is an interesting problem. An itFSS with this property is called function-private. In this paper, we also dene a parameter called the mutual rate of itFSS in order to measure the amount of information that will be leaked by the parties' output shares. We calculate the mutual rates for several specic itFSS schemes. We also dene computational function privacy and propose a 2-party itFSS scheme with computational function privacy. |
关键词 | Function secret sharing information-theoretic private information retrieval |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
资助项目 | National Natural Science Foundation of China[61602304] |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000525401500017 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
EI入藏号 | 20200908225042 |
EI主题词 | Computational complexity ; Information retrieval |
EI分类号 | Information Theory and Signal Processing:716.1 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Information Retrieval and Use:903.3 |
WOS关键词 | LOCALLY DECODABLE CODES ; CONSTRUCTIONS ; RETRIEVAL |
原始文献类型 | Journal article (JA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/114834 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_张良峰组 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Wen Ming Li,Liang Feng Zhang. Towards Efficient Information-Theoretic Function Secret Sharing[J]. IEEE ACCESS,2020,8:28512-28523. |
APA | Wen Ming Li,&Liang Feng Zhang.(2020).Towards Efficient Information-Theoretic Function Secret Sharing.IEEE ACCESS,8,28512-28523. |
MLA | Wen Ming Li,et al."Towards Efficient Information-Theoretic Function Secret Sharing".IEEE ACCESS 8(2020):28512-28523. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wen Ming Li]的文章 |
[Liang Feng Zhang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wen Ming Li]的文章 |
[Liang Feng Zhang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wen Ming Li]的文章 |
[Liang Feng Zhang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。