Towards Efficient Information-Theoretic Function Secret Sharing
2020
发表期刊IEEE ACCESS (IF:3.4[JCR-2023],3.7[5-Year])
ISSN2169-3536
卷号8页码:28512-28523
发表状态已发表
DOI10.1109/ACCESS.2020.2971722
摘要

A (t; r)-function secret sharing ((t; r)-FSS) scheme allows a dealer to secret-share a function f among r parties as r secret keys k 1; : : :; kr such that for any input x the parties can compute r output shares that allow the reconstruction of f (x) but any t of the parties cannot learn any information about f. FSS schemes for point functions have been constructed under the name of distributed point functions (DPFs). The existing DPFs are computationally secure and based on the existence of PRGs or OWFs. As a result, the protocols where DPFs work as building blocks are computationally secure as well. In this paper, we study information-theoretically secure (t; r)-FSS (called (t; r)-itFSS) and propose a generic transformation from information-theoretic private information retrieval (PIR) schemes to itFSS schemes for point functions. We measure the efciency of itFSS with its communication complexity, which can be dened as the total length of the secret keys and the output shares, maximized over the choices of f and x. By instantiating the generic transformation, we obtain (t; r)-itFSS schemes for a variety of choices of (t; r), which have sublinear (in the functions' domain size) communication complexity. How to make sure that the parties' shares of f (x) do not reveal more information than what needed to compute f (x) is an interesting problem. An itFSS with this property is called function-private. In this paper, we also dene a parameter called the mutual rate of itFSS in order to measure the amount of information that will be leaked by the parties' output shares. We calculate the mutual rates for several specic itFSS schemes. We also dene computational function privacy and propose a 2-party itFSS scheme with computational function privacy.

关键词Function secret sharing information-theoretic private information retrieval
URL查看原文
收录类别SCI ; SCIE ; EI
资助项目National Natural Science Foundation of China[61602304]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000525401500017
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20200908225042
EI主题词Computational complexity ; Information retrieval
EI分类号Information Theory and Signal Processing:716.1 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Information Retrieval and Use:903.3
WOS关键词LOCALLY DECODABLE CODES ; CONSTRUCTIONS ; RETRIEVAL
原始文献类型Journal article (JA)
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/114834
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_张良峰组
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Wen Ming Li,Liang Feng Zhang. Towards Efficient Information-Theoretic Function Secret Sharing[J]. IEEE ACCESS,2020,8:28512-28523.
APA Wen Ming Li,&Liang Feng Zhang.(2020).Towards Efficient Information-Theoretic Function Secret Sharing.IEEE ACCESS,8,28512-28523.
MLA Wen Ming Li,et al."Towards Efficient Information-Theoretic Function Secret Sharing".IEEE ACCESS 8(2020):28512-28523.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wen Ming Li]的文章
[Liang Feng Zhang]的文章
百度学术
百度学术中相似的文章
[Wen Ming Li]的文章
[Liang Feng Zhang]的文章
必应学术
必应学术中相似的文章
[Wen Ming Li]的文章
[Liang Feng Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。