An Empirical Study of Encoders and Decoders in Graph-Based Dependency Parsing
2020
发表期刊IEEE ACCESS
ISSN2169-3536
卷号8
DOI10.1109/ACCESS.2020.2974109
摘要Graph-based dependency parsing consists of two steps: first, an encoder produces a feature representation for each parsing substructure of the input sentence, which is then used to compute a score for the substructure; and second, a decoder finds the parse tree whose substructures have the largest total score. Over the past few years, powerful neural techniques have been introduced into the encoding step which substantially increases parsing accuracies. However, advanced decoding techniques, in particular high-order decoding, have seen a decline in usage. It is widely believed that contextualized features produced by neural encoders can help capture high-order decoding information and hence diminish the need for a high-order decoder. In this paper, we empirically evaluate the combinations of different neural and non-neural encoders with first- and second-order decoders and provide a comprehensive analysis about the effectiveness of these combinations with varied training data sizes. We find that: first, when there is large training data, a strong neural encoder with first-order decoding is sufficient to achieve high parsing accuracy and only slightly lags behind the combination of neural encoding and second-order decoding; second, with small training data, a non-neural encoder with a second-order decoder outperforms the other combinations in most cases.
URL查看原文
收录类别SCI ; EI ; SCIE
来源库IEEE
引用统计
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/114832
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_屠可伟组
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
3.University of Chinese Academy of Sciences, Beijing, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Ge Wang,Ziyuan Hu,Zechuan Hu,et al. An Empirical Study of Encoders and Decoders in Graph-Based Dependency Parsing[J]. IEEE ACCESS,2020,8.
APA Ge Wang,Ziyuan Hu,Zechuan Hu,&Kewei Tu.(2020).An Empirical Study of Encoders and Decoders in Graph-Based Dependency Parsing.IEEE ACCESS,8.
MLA Ge Wang,et al."An Empirical Study of Encoders and Decoders in Graph-Based Dependency Parsing".IEEE ACCESS 8(2020).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ge Wang]的文章
[Ziyuan Hu]的文章
[Zechuan Hu]的文章
百度学术
百度学术中相似的文章
[Ge Wang]的文章
[Ziyuan Hu]的文章
[Zechuan Hu]的文章
必应学术
必应学术中相似的文章
[Ge Wang]的文章
[Ziyuan Hu]的文章
[Zechuan Hu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。