ShanghaiTech University Knowledge Management System
VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results | |
Dawei Du1; Pengfei Zhu2; Longyin Wen3; Xiao Bian4; Haibin Lin5; Qinghua Hu2; Tao Peng2; Jiayu Zheng2; Xinyao Wang3; Yue Zhang3; Liefeng Bo3; Hailin Shi6; Rui Zhu6; Aashish Kumar7; Aijin Li8; Almaz Zinollayev9; Anuar Askergaliyev9; Arne Schumann10; Binjie Mao11; Byeongwon Lee12; Chang Liu13; Changrui Chen14; Chunhong Pan11; Chunlei Huo11; Da Yu15; DeChun Cong16; Dening Zeng8; Dheeraj Reddy Pailla17; Di Li8; Dong Wang13; Donghyeon Cho18; Dongyu Zhang19; Furui Bai20; George Jose7; Guangyu Gao21; Guizhong Liu22; Haitao Xiong23; Hao Qi22; Haoran Wang8; Heqian Qiu24; HongLiang Li24; Huchuan Lu13; Ildoo Kim25; Jaekyum Kim26; Jane Shen20; Jihoon Lee25; Jing Ge21; Jingjing Xu16; Jingkai Zhou23; Jonas Meier10; Jun Won Choi26; Junhao Hu27 ![]() ![]() | |
2019-10 | |
会议录名称 | 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW)
![]() |
ISSN | 2473-9936 |
页码 | 213-226 |
发表状态 | 已发表 |
DOI | 10.1109/ICCVW.2019.00030 |
摘要 | Recently, automatic visual data understanding from drone platforms becomes highly demanding. To facilitate the study, the Vision Meets Drone Object Detection in Image Challenge is held the second time in conjunction with the 17-th International Conference on Computer Vision (ICCV 2019), focuses on image object detection on drones. Results of 33 object detection algorithms are presented. For each participating detector, a short description is provided in the appendix. Our goal is to advance the state-of-the-art detection algorithms and provide a comprehensive evaluation platform for them. The evaluation protocol of the VisDrone-DET2019 Challenge and the comparison results of all the submitted detectors on the released dataset are publicly available at the website: http: //www.aiskyeye.com/. The results demonstrate that there still remains a large room for improvement for object detection algorithms on drones. |
关键词 | Detectors Object detection Drones Computer vision Detection algorithms Conferences Training |
会议地点 | Seoul, Korea (South) |
会议日期 | 27-28 Oct. 2019 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
原始文献类型 | Conferences |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/114792 |
专题 | 信息科学与技术学院_硕士生 |
作者单位 | 1.University at Albany, USA 2.Tianjin University, China 3.JD Digits, USA 4.GE Global Research, USA 5.Stony Brook University, USA 6.JD AI research, China 7.Harman-Samsung, India 8.Xidian University, China 9.BTS Digital, Kazakhstan 10.Fraunhofer IOSB, Germany 11.Institute of Automation, Chinese Academy of Sciences, China 12.SK Telecom, South Korea 13.Dalian University of Technology, China 14.Ocean University of China, China 15.Harbin Institute of Technology, China 16.Nanjing University of Posts and Telecommunications, China 17.Siemens Technology and Services Private Limited, India 18.SK T-Brain, South Korea 19.SUN YAT-SEN University, China 20.Pensees Singapore Institute, Singapore 21.Beijing Institute of Technology, China 22.Xi’an Jiaotong University, China 23.South China University of Technology, China 24.University of Electronic Science and Technology of China, China 25.Kakao Brain, South Korea 26.Hanyang University, South Korea 27.ShanghaiTech University, China 28.Chongqing University, China 29.Samsung Inc, USA 30.Snowcloud.ai, China 31.Queen Mary University of London, UK 32.Huazhong University of Science and Technology, China |
推荐引用方式 GB/T 7714 | Dawei Du,Pengfei Zhu,Longyin Wen,et al. VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results[C],2019:213-226. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。