ShanghaiTech University Knowledge Management System
Optimizing energy efficiency of CNN-based object detection with dynamic voltage and frequency scaling | |
2020-02 | |
发表期刊 | JOURNAL OF SEMICONDUCTORS (IF:4.8[JCR-2023],3.3[5-Year]) |
ISSN | 1674-4926 |
卷号 | 41期号:2 |
发表状态 | 已发表 |
DOI | 10.1088/1674-4926/41/2/022406 |
摘要 | On the one hand, accelerating convolution neural networks (CNNs) on FPGAs requires ever increasing high energy efficiency in the edge computing paradigm. On the other hand, unlike normal digital algorithms, CNNs maintain their high robustness even with limited timing errors. By taking advantage of this unique feature, we propose to use dynamic voltage and frequency scaling (DVFS) to further optimize the energy efficiency for CNNs. First, we have developed a DVFS framework on FPGAs. Second, we apply the DVFS to SkyNet, a state-of-the-art neural network targeting on object detection. Third, we analyze the impact of DVFS on CNNs in terms of performance, power, energy efficiency and accuracy. Compared to the state-of-the-art, experimental results show that we have achieved 38% improvement in energy efficiency without any loss in accuracy. Results also show that we can achieve 47% improvement in energy efficiency if we allow 0.11% relaxation in accuracy. |
关键词 | CNN FPGA DVFS object detection |
收录类别 | ESCI ; EI ; CSCD |
WOS研究方向 | Engineering |
WOS类目 | ENGINEERING ELECTRICAL ELECTRONIC |
CSCD记录号 | CSCD:6663065 |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/104328 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_哈亚军组 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology,ShanghaiTech University; Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences;University of Chinese Academy of Sciences, Beijing 2.University of Nottingham Ningbo China, Ningbo, Zhejiang 315100, China 3.Universite Paris-Est, Paris, 93162, France |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Jiang Weixiong,Yu Heng,Zhang Jiale,et al. Optimizing energy efficiency of CNN-based object detection with dynamic voltage and frequency scaling[J]. JOURNAL OF SEMICONDUCTORS,2020,41(2). |
APA | Jiang Weixiong,Yu Heng,Zhang Jiale,Wu Jiaxuan,Luo Shaobo,&Ha Yajun.(2020).Optimizing energy efficiency of CNN-based object detection with dynamic voltage and frequency scaling.JOURNAL OF SEMICONDUCTORS,41(2). |
MLA | Jiang Weixiong,et al."Optimizing energy efficiency of CNN-based object detection with dynamic voltage and frequency scaling".JOURNAL OF SEMICONDUCTORS 41.2(2020). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。