| |||||||
ShanghaiTech University Knowledge Management System
Quality estimation and optimization of adaptive stereo matching algorithms for smart vehicles | |
2020-03 | |
发表期刊 | ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS (IF:2.8[JCR-2023],2.3[5-Year]) |
ISSN | 15583465 |
卷号 | 19期号:2 |
发表状态 | 已发表 |
DOI | 10.1145/3372784 |
摘要 | Stereo matching is a promising approach for smart vehicles to find the depth of nearby objects. Transforming a traditional stereo matching algorithm to its adaptive version has potential advantages to achieve the maximum quality (depth accuracy) in a best-effort manner. However, it is very challenging to support this adaptive feature, since (1) the internal mechanism of adaptive stereo matching (ASM) has to be accurately modeled, and (2) scheduling ASM tasks on multiprocessors to generate the maximum quality is difficult under strict real-time constraints of smart vehicles. In this article, we propose a framework for constructing an ASM application and optimizing its output quality on smart vehicles. First, we empirically convert stereo matching into ASM by exploiting its inherent characteristics of disparity-cycle correspondence and introduce an exponential quality model that accurately represents the quality-cycle relationship. Second, with the explicit quality model, we propose an efficient quadratic programming-based dynamic voltage/frequency scaling (DVFS) algorithm to decide the optimal operating strategy, which maximizes the output quality under timing, energy, and temperature constraints. Third, we propose two novel methods to efficiently estimate the parameters of the quality model, namely location similarity-based feature point thresholding and street scenario-confined CNN prediction. Results show that our DVFS algorithm achieves at least 1.61 times quality improvement compared to the state-of-the-art techniques, and average parameter estimation for the quality model achieves 96.35% accuracy on the straight road. |
收录类别 | EI ; SCIE |
语种 | 英语 |
出版者 | Association for Computing Machinery |
EI入藏号 | 20200908219975 |
EI主题词 | Dynamic frequency scaling ; Embedded systems ; Quadratic programming ; Vehicles ; Voltage scaling |
EI分类号 | Energy Utilization:525.3 ; Optimization Techniques:921.5 |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/104324 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_哈亚军组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
通讯作者 | Chen, Fupeng |
作者单位 | 1.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China 2.University of Chinese Academy of Sciences, China 3.School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai; 201210, China 4.University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo; 315100, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Chen, Fupeng,Yu, Heng,Ha, Yajun. Quality estimation and optimization of adaptive stereo matching algorithms for smart vehicles[J]. ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS,2020,19(2). |
APA | Chen, Fupeng,Yu, Heng,&Ha, Yajun.(2020).Quality estimation and optimization of adaptive stereo matching algorithms for smart vehicles.ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS,19(2). |
MLA | Chen, Fupeng,et al."Quality estimation and optimization of adaptive stereo matching algorithms for smart vehicles".ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS 19.2(2020). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Chen, Fupeng]的文章 |
[Yu, Heng]的文章 |
[Ha, Yajun]的文章 |
百度学术 |
百度学术中相似的文章 |
[Chen, Fupeng]的文章 |
[Yu, Heng]的文章 |
[Ha, Yajun]的文章 |
必应学术 |
必应学术中相似的文章 |
[Chen, Fupeng]的文章 |
[Yu, Heng]的文章 |
[Ha, Yajun]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。