ShanghaiTech University Knowledge Management System
Dynamic Context Correspondence Network for Semantic Alignment | |
2019-10 | |
会议录名称 | 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV)
![]() |
ISSN | 1550-5499 |
卷号 | 2019-October |
页码 | 2010-2019 |
发表状态 | 已发表 |
DOI | 10.1109/ICCV.2019.00210 |
摘要 | Establishing semantic correspondence is a core problem in computer vision and remains challenging due to large intra-class variations and lack of annotated data. In this paper, we aim to incorporate global semantic context in a flexible manner to overcome the limitations of prior work that relies on local semantic representations. To this end, we first propose a context-aware semantic representation that incorporates spatial layout for robust matching against local ambiguities. We then develop a novel dynamic fusion strategy based on attention mechanism to weave the advantages of both local and context features by integrating semantic cues from multiple scales. We instantiate our strategy by designing an end-to-end learnable deep network, named as Dynamic Context Correspondence Network (DCCNet). To train the network, we adopt a multi-auxiliary task loss to improve the efficiency of our weakly-supervised learning procedure. Our approach achieves superior or competitive performance over previous methods on several challenging datasets, including PF-Pascal, PF-Willow, and TSS, demonstrating its effectiveness and generality. |
关键词 | Semantics Correlation Task analysis Robustness Feature extraction Computer vision Pattern matching |
会议地点 | Seoul, Korea, Republic of |
会议日期 | 27 Oct.-2 Nov. 2019 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S ; CPCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61703195] ; [18ZR1425100] |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20201208327068 |
EI主题词 | Computer vision ; Object recognition ; Semantic Web |
EI分类号 | Computer Software, Data Handling and Applications:723 ; Computer Applications:723.5 ; Information Science:903 |
原始文献类型 | Conferences |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/104311 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_何旭明组 信息科学与技术学院_硕士生 |
通讯作者 | Huang, Shuaiyi; He, Xuming |
作者单位 | ShanghaiTech University, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Huang, Shuaiyi,Wang, Qiuyue,Zhang, Songyang,et al. Dynamic Context Correspondence Network for Semantic Alignment[C]:Institute of Electrical and Electronics Engineers Inc.,2019:2010-2019. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。