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Abstract. A variety of modern applications exhibit multi-view multi-label learn-
ing, where each sample has multi-view features, and multiple labels are correlated
via common views. Current methods usually fail to directly deal with the setting
where only a subset of features and labels are observed for each sample, and ig-
nore the presence of noisy views and imbalanced labels in real-world problems.
In this paper, we propose a novel method to overcome the limitations. It jointly
embeds incomplete views and weak labels into a low-dimensional subspace with
adaptive weights, and facilitates the difference between embedding weight matri-
ces via auto-weighted Hilbert-Schmidt Independence Criterion (HSIC) to reduce
the redundancy. Moreover, it adaptively learns view-wise importance for embed-
ding to detect noisy views, and mitigates the label imbalance problem by fo-
cal loss. Experimental results on four real-world multi-view multi-label datasets
demonstrate the effectiveness of the proposed method.

Keywords: Multi-View Multi-Label Learning · Weakly Supervised Learning ·
Hilbert-Schmidt Independence Criterion · Focal Loss.

1 Introduction

In many real-world applications, samples are often represented by several feature sub-
sets, and meanwhile associated with multiple labels [10]. In addition, it is probably
that only a subset of features and labels are observed for each sample. Current related
methods [12,5] usually treat multiple view equally and complete the missing data by
encouraging low-rankness, which may not hold in practice.

To address the challenge, we propose a novel method for iNcomplete multi-view
weAk-label learning with noIsy features and imbaLanced labels (NAIL). NAIL tackles
the problem by projecting multiple incomplete views into a common latent subspace
using the L2,1 norm, adaptively adjusting view-wise weights to detect noisy views. It
also embeds weak labels into the same subspace, employing Focal Loss to handle label
imbalance. To remove the redundancy during the embeding, NAIL utilizes the auto-
weighted Hilbert-Schmidt Independence Criterion (HSIC) to drive embedding weight
matrices to differ from each other in Reproducing Kernel Hilbert Spaces (RKHSs). The
workflow of NAIL is illustrated in Fig. 1.
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Fig. 1: The framework of NAIL. NAIL first reconstructs incomplete views {Xv}mv=1 and weak
labels Y by a common low-dimensional representation F, i.e., Xv ≈ FUv(∀v) and Y ≈
σ(FUm+1), where σ denotes the sigmoid function. The reconstruction errors for {Xv}mv=1

and Y are measured by L2,1-norm and focal loss, respectively, and are adaptively weighted by
{αv}mv=1. It then projects weight matrices {Uv}m+1

v=1 into RKHSs and promotes the differences
between weight matrices via β auto-weighted HSIC, in order to reduce the redundancy during
embedding. Finally, NAIL predicts unobserved labels in Y based on σ(FUm+1).

2 Methodology

Let Xv = [xv
1,x

v
2, . . . ,x

v
n]

T ∈ Rn×dv denote the feature matrix in the v-th view, and
Y = [y1,y2, . . . ,yn]

T ∈ {0, 1}n×l denote the label matrix, where yij = 1 means that
the j-th label is assigned to the i-th instance and yij = 0 otherwise. We introduce Ov

X ∈
Rn×dv and OY ∈ Rn×l to denote indices of the entries in Xv and Y, respectively,
such that (Ov

X)ij = 1 or (OY)ij = 1 if the (i, j)-th entry is observed in Xv or Y,
and (Ov

X)ij = 0 or (OY)ij = 0 otherwise. The goal of NAIL is to predict unobserved
labels in presence of both noisy views and imbalanced labels.

2.1 Auto-Weighted Incomplete Multi-View Embedding

Given a multi-view dataset, we seek to find a shared latent subspace F ∈ Rn×k (k < dv ,
∀v) by integrating complementary information from different views [3], which can be
formulated as minF,{Uv}≥0

∑m
v=1 ||Xv −FUv||2F , where || · ||F represents the Frobe-

nius norm and Uv ∈ Rk×dv is the weight matrix of the v-th view. It embeds multi-
ple views into an identical subspace by treating each view equally, deviating from the
true latent subspace when multiple views have different importance during embedding.
Furthermore, the existence of missing entries poses another challenge. To address the
problems, we propose the auto-weighted incomplete multi-view embedding:

min
α,F,{Uv}≥0,∑

αv=1

m∑
v=1

αs
v||Ov

X ⊙ (Xv − FUv)||2,1 (1)

where ⊙ is the Hadamard product, and ||A||2,1 =
∑n

i=1 ||ai:||2 represents the L2,1

norm, which is insensitive to outlier samples by decreasing the contribution of the out-
lier to the reconstruction error. In (1), αv is introduced to weight the embedding im-
portance of the v-th view (α = [α1, α2, . . . , αm]), and s is a constant, which is fixed
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as 0.5 in experiments. According to (1), Xv is mapped to a common latent represen-
tation F ∈ Rn×k with view-specific adaptive weight αv . For the v-th view, the more
importance contributed to embedding F, the higher weight of αv , and vice versa.

2.2 Imbalanced Weak-Label Embedding

Cross Entropy (CE) [2] is often used to measure the classification loss between the
ground truth and predictions. However, possible label imbalance, i.e., a large difference
between the proportions of positive and negative labels, can lead to a drop in prediction
accuracy. Here we adopt Focal Loss (FL) [6] to mitigate this problem. For the j-th label
in the i-th sample, focal loss FL(yij , pij) is computed based on the ground truth yij and
the predicted label probability pij , i.e., FL(yij , pij) = −aij(1 − qij)

γ log(qij), where
γ is a constant, and aij takes a value a ∈ [0, 1] if yij = 1 and aij = 1 − a otherwise.
In experiments, we fix γ = 2 and a = 0.5. In focal loss, qij = pij if yij = 1, and
qij = 1 − pij otherwise. Predicted probability pij is calculated by pij = σ(fTi: u

m+1
:j ),

where σ(·) is the sigmoid function, fi: is the i-th row of the latent embedding F in
(1), and um+1

:j is the j-th column of the weight matrix Um+1 for label embedding.
Therefore, imbalanced weak-label embedding can be modeled as follows:

min
F,Um+1≥0

∑
(i,j)∈OY

FL(yij , σ(fTi: u
m+1
:j )). (2)

Thus, the label imbalance problem is alleviated by applying focal loss on the observed
labels, which helps the model to focus on learning hard misclassified samples.

2.3 Correlation Modeling by Auto-Weighted HSIC

Next, we adopt the Hilbert-Schmidt Independence Criterion (HSIC) [4] to model the
nonlinear correlations among weight matrices {Uv}m+1

v=1 in an adaptive manner. Specif-
ically, HSIC estimates the dependency between Uv and Uv′

(v′ ̸= v) in the Reproduc-
ing Kernel Hilbert Spaces (RKHSs), i.e., HSIC(Uv,Uv′

) = (n−1)−2tr(KvHKv′
H),

where Kv ∈ Rn×n is the Gram matrix that measures the similarity between row vec-
tors of Uv . H = I − 1

n11
T is the centering matrix, where I ∈ Rn×n is an identity

matrix, and 1 ∈ Rn is an all-one vector. It is guaranteed that the lower the value of
HSIC, the lower the dependence between Uv and Uv′

. Thus, to reduce the redundancy
among Uvs during embedding, we can minimize the HSIC between each pair of weight
matrices. However, noisy views make directly minimizing the HSIC too restrictive in
practice. To address the problem, we propose to minimize auto-weighted HSIC, i.e.,

min
β,{Uv}≥0
||βv||2=1

m+1∑
v=1

∑
v′ ̸=v

βvv′HSIC(Uv,Uv′
) (3)

where βvv′ ≥ 0 measures the importance of the correlation between Uv and Uv′
and

βv = [βv1, βv2, . . . , βv(m+1)]. Once the v-th view is indeed noisy, a relatively larger
value will be assigned to βv , leading to the decorrelation between Uv and Uv′

(∀v′ ̸= v)
by imposing a stronger degree of penalty on HSIC. Therefore, multiple views and labels
are correlated in a non-linear and adaptive way.
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2.4 The Proposed NAIL Method

By incorporating (1), (2) and (3), we now have the optimization problem of NAIL:

min
α,β,

F,{Uv}

m∑
v=1

αs
v||Ov

X ⊙ (Xv − FUv)||2,1 + λ
∑

(i,j)∈OY

FL(yij , σ(fTi: u:j)) (4)

+ µ

m+1∑
v=1

∑
v′ ̸=v

βvv′HSIC(Uv,Uv′
), s.t.

∑
αv = 1, ||βv||2 = 1,α,β,F, {Uv} ≥ 0,

where λ and µ are nonnegative hyperparameters. It is worth noting that αv weights the
reconstruction error between Xv and FUv , while βv weights the correlation between
Uv and Uv′

(∀v′ ̸= v). In other words, once Xv is noisy, αv will be assigned to a
small value as it cannot be recovered well by FUv , while βv will take a large value
in order to decorrelate Uv with Uv′

(∀v′ ̸= v). In this way, NAIL adaptively embeds
incomplete views and weak labels into a common latent subspace, and non-linearly
decorrelates weight matrices with adaptively weights, enabling to complete missing
labels in presence of both noisy views and imbalanced labels. Once (4) is solved, the
prediction for missing labels is made by thresholding σ(fTi: u:j) with a threshold of 0.5.

3 Experiments

3.1 Experimental Settings

We conduct experiments on four benchmark multi-view multi-label datasets: Corel5k3,
Pascal073, Yeast dataset4 and Emotions5. The proposed NAIL6 is compared with four
state-of-the-art methods: lrMMC [7], McWL [9], iMVWL [8] and NAIM3L [5]. lrMMC
and McWL are adopted by filling missing features with zero, and iMVWL and NAIM3L
are originally designed for incomplete multi-view weak-label learning. NAIL uses the
Gaussian kernel in HSIC, and NAIL-L is its variant with the linear kernel.

We tune the hyperparameters of lrMMC, NAIL-L and NAIL on all datasets, and
tune the hyperparameters of McWL, iMVWL and NAIM3L on the Yeast and Emotions
datasets by grid search to produce the best possible results. On the two image datasets,
hyperparameters of McWL, iMVWL and NAIM3L are selected as recommended in
the original papers. We select the values of hyperparameters λ and µ from {10i|i =
−3, . . . , 3}, and the ratio rk of k

d from {0.2, 0.5, 0.8} for NAIL and NAIL-L. We set s =
a = 0.5 and γ = 2 in experiments. We randomly sample 2000 samples of each image
dataset, and use all samples from the Yeast and Emotions datasets in the experiment.
We randomly remove r% samples from each feature view by ensuring that each sample
appears in at least one feature view, and randomly remove s% positive and negative
samples for each label. We randomly select 70% of the datasets as the training set and

3 http://lear.inrialpes.fr/people/guillaumin/data.php
4 http://vlado.fmf.uni-lj.si/pub/networks/data/
5 http://www.uco.es/kdis/mllresources
6 The code and supplement: https://github.com/mtics/NAIL

http://lear.inrialpes.fr/people/guillaumin/data.php
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://www.uco.es/kdis/mllresources
https://github.com/mtics/NAIL
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Table 1: Experimental results on four real-world datasets at r% = 50% and s% = 50%. The
best results are highlighted in boldface, and the second best results are underlined.

lrMMC McWL iMVWL NAIM3L NAIL-L NAIL
Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

Emotions
HS 0.5057 0.0125 0.6303 0.0031 0.6281 0.0082 0.6911 0.0068 0.6920 0.0307 0.7135 0.0104
AP 0.5293 0.0140 0.6102 0.0111 0.6006 0.0029 0.6783 0.0149 0.6923 0.0291 0.7017 0.0099

Yeast
HS 0.7275 0.0002 0.7420 0.0020 0.7337 0.0113 0.7089 0.0003 0.7522 0.0049 0.7462 0.0081
AP 0.6503 0.0000 0.6936 0.0040 0.7219 0.0037 0.6665 0.0113 0.7267 0.0102 0.7235 0.0187

Corel5k
HS 0.9084 0.0089 0.9070 0.0001 0.9581 0.0090 0.9575 0.0174 0.9792 0.0064 0.9800 0.0058
AP 0.1897 0.0021 0.1527 0.0052 0.2643 0.0005 0.5212 0.0142 0.3594 0.0834 0.3436 0.0028

Pascal07
HS 0.9194 0.0009 0.8132 0.0004 0.8690 0.0144 0.9211 0.0071 0.9450 0.0131 0.9480 0.0096
AP 0.3998 0.0013 0.3438 0.0032 0.4364 0.0169 0.4494 0.0076 0.4892 0.0138 0.4828 0.0188

use the rest as the validation set, and repeat this procedure by ten times and report the
average values and the standard deviations. The prediction performance is evaluated by
two metrics: Hamming Score (HS) [11] and Average Precision (AP) [1]. In this work,
our goal is to complete the missing labels in the training set.

3.2 Experimental Results

Evaluation of Comparing Methods Table 1 shows the experimental results of all
comparing methods on four real-world datasets at r% = 50% and s% = 50%. From
Table 1, we can see that NAIL and NAIL-L outperform comparing methods in most of
the cases. The performance superiority probably comes from their ability on handling
noisy views and imbalanced labels, and decorrelating weight matrices for redundancy
removal in an adaptive way. The incompleteness of multi-view data causes the perfor-
mance degradation of lrMMC and McWL. iMVWL and NAIM3L outperform lrMMC
and McML in most cases, but perform worse than NAIL and NAIL-L. There are two
possible reasons: one is that iMVWL assumes that the label matrix is low-rank, and
the other is that both iMVWL and NAIM3L treat multiple views equally. In contrast,
NAIL and NAIL-L measure the importance of each view by adaptively choosing ap-
propriate values of α and β. In summary, it shows that once a low-dimensional space
indeed contains nonlinear transformations about features and labels, NAIL enables to
save their structural properties and uses the HSIC to capture correlations between them.
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Fig. 2: Ablation study of NAIL on the Corel5k
dataset at r% = 50% by varying s% from 10%
to 50% by step 10%.

Ablation Study To investigate the
effects of NAIL-L’s components, we
introduce three variants of NAIL-L,
namely NAIL-1, NAIL-2 and NAIL-3.
NAIL-1 uses Frobenius norm to mea-
sure the reconstruction error of fea-
tures and labels, instead of L2,1 norm
and focal loss. NAIL-2 ignores the
decorrelation between weight matrices
during embedding by simply remov-
ing auto-weighted HSIC. NAIL-3 treats multiple views equally in both reconstruction
and decorrelation, by omitting α and β. Fig. 2 shows the ablation study of NAIL-L on



6 Z. Li et al.

the Corel5k dataset at r% = 50% by varying values of s%. Among the variants, NAIL-3
performs the worst as it fails to detect noisy views. NAIL-1 and NAIL-2 perform worse
than NAIL-L, probably because the simple Frobenius norm based loss in NAIL-1 is
sensitive to sample outliers and imbalanced labels, and the removal of HSIC in NAIL-2
is harmful for generalization. In contrast, NAIL-L has the best performance in RS and
AUC on all datasets, indicating the effectiveness and necessity of its components.

4 Conclusion

In this paper, we propose a novel method called NAIL to deal with incomplete multi-
view weak-label data. NAIL jointly embeds incomplete views and weak labels into a
shared subspace with adaptive weights, and facilitates the difference between the em-
bedding weight matrices via auto-weighted HSIC. Moreover, to deal with noisy views
and imbalanced labels, adaptive L2,1 norm and focal loss are used to calculate the re-
construction errors for features and labels, respectively. Empirical evidence verifies that
NAIL is flexible enough to handle various real-world problems.
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