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ABSTRACT

Understanding the extended clearance concept and establishing a
physiologically based pharmacokinetic (PBPK) model are crucial for
investigating the impact of changes in transporter and metabolizing
enzyme abundance/functions on drug pharmacokinetics in blood and
tissues. This mini-review provides an overview of the extended clear-
ance concept and a PBPK model that includes transporter-mediated
uptake processes in the liver. In general, complete in vitro and in vivo
extrapolation (IVIVE) poses challenges due to missing factors that
bridge the gap between in vitro and in vivo systems. By considering
key in vitro parameters, we can capture in vivo pharmacokinetics, a
strategy known as the top-down or middle-out approach. We present
the latest progress, theory, and practice of the Cluster Gauss-Newton
method, which is used for middle-out analyses. As examples of poor
IVIVE, we discuss “albumin-mediated hepatic uptake” and “time-de-
pendent inhibition” of OATP1Bs. The hepatic uptake of highly plasma-
bound drugs is more efficient than what can be accounted for by their
unbound concentration alone. This phenomenon is referred to as
“albumin-mediated” hepatic uptake. IVIVEwas improvedbymeasuring

hepatic uptake clearance in vitro in the presence of physiologic albu-
min concentrations. Lastly, we demonstrate the application of Cluster
Gauss-Newton method-based analysis to the target-mediated drug
disposition of bosentan. Incorporating saturable target binding and
OATP1B-mediated hepatic uptake into the PBPK model enables the
consideration of nonlinear kinetics across a wide dose range and the
prediction of receptor occupancy over time.

SIGNIFICANCE STATEMENT

There have been multiple instances where researchers' endeavors
to unravel the underlyingmechanism of poor in vitro-in vivo extrap-
olation have led to the discovery of previously undisclosed truths.
These include 1) albumin-mediated hepatic uptake, 2) the target-
mediated drug disposition in small molecules, and 3) the existence
of a trans-inhibition mechanism by inhibitors for OATP1B-mediated
hepatic uptake of drugs. Consequently, poor in vitro-in vivo extrapo-
lation and the subsequent inquisitiveness of scientists may serve as
a pivotal gateway to uncover hiddenmechanisms.

Introduction

For the past 45 years, I have been utilizing the physiologically based
pharmacokinetic (PBPK) model to predict in vivo kinetics, including
metabolic clearance, tissue uptake and excretion clearance, and drug-
drug interactions, based on in vitro metabolism, transport, and binding
experiments using cells and organelles (Iwatsubo et al., 1997; Kusuhara
and Sugiyama, 2009; Shitara et al., 2013). The pharmacokinetics (PK)
of drugs in vivo can be mathematically described by models incorporat-
ing parameters related to biochemical interactions between enzymes and
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drugs, transporters (TPs) and drugs, or binding proteins and drugs, as
well as physiologic and anatomic parameters such as blood flow and
spatial arrangement of cells and tissues in vivo. With the advancement
of computers, it has now become feasible to make predictions based on
various parameters obtained from in vitro experiments.
In this mini-review, we provide an overview of recent research con-

ducted at the University of Tokyo, RIKEN, and Josai International Uni-
versity. Over the past 20 years, our primary focus has been on
addressing the challenge of predicting hepatic clearance in humans
through in vitro experiments, specifically employing the approach of
in vitro-in vivo extrapolation (IVIVE). This mini-review not only em-
phasizes our own contributions but also encompasses the work of other
researchers in the field. The theoretical framework and methodology
used in our research are grounded in PBPK modeling and the extended
clearance concept. Moreover, we introduce a novel methodology called
the Cluster-Gauss-Newton nethod (CGNM). Through this review, we
aim to provide insights into the current state-of-the-art advancements
and future prospects pertaining to the aforementioned objectives.

Role of Transporters in Pharmacokinetics

In living organisms, a diverse array of TPs are expressed in various
tissues, playing a crucial role in facilitating the active uptake of drugs
and endogenous substances, as well as their active excretion/efflux. Un-
derstanding drug discovery based on TP recognition is expected to en-
able the development of drugs with ideal PK properties that maintain
drug efficacy while minimizing tissue/cell transfer associated with adverse
drug reactions. There is a growing interest in TP research from the stand-
point of drug development. Transporters, similar to drug-metabolizing
enzymes, exhibit diverse characteristics, including multiplicity, genetic
polymorphism, organ specificity, inducible expression, and broad sub-
strate recognition (Giacomini et al., 2010; Giacomini and Sugiyama,
2023). In drug development, determining the factors governing a drug's
PK properties in a clinical setting is crucial. Biopharmaceutics drug dis-
position classification system was proposed by Benet and his colleagues
(Wu and Benet 2005; Benet et al. 2011). TP effects in the intestine and
the liver are not clinically relevant for biopharmaceutics drug disposi-
tion classification system class 1 drugs but potentially can have a high
impact for class 2 (efflux in the gut and efflux and uptake in the liver)
and class 3 (uptake and efflux in both gut and liver) drugs.

Incorporating new technologies and evaluation systems at an early
stage of development can optimize PK properties, leading to efficient
drug development. Thus, it is important to establish evaluation methods
for quantifying the contribution ratio of TPs in each tissue and extrapo-
lation methods from in vitro to in vivo. These approaches enable the uti-
lization of gene expression systems in drug development, evaluation of
drug-drug interactions, analysis of interindividual variation resulting
from genetic polymorphisms (Rostami-Hodjegan, 2012; Yee et al.,
2018), and examination of drug PK in special populations, such as those
with hepatic/renal failure, aged patients, pediatrics, and during preg-
nancy (Howard et al., 2018). By enhancing our understanding of TPs
and their impact on PK, we can advance drug discovery and improve
patient care.

The Role of PBPK Modeling in Drug Approval Applications

In recent years, regulatory agencies, including the U.S. Food and
Drug Administration, have increasingly relied on PK predictions using
PBPK models to inform decision-making processes related to clinical
trials and dosing strategies. This shift reflects the understanding that
conducting exhaustive clinical trials encompassing all possible drug
combinations and patient backgrounds is impractical, and regulatory re-
quirements should not hinder the progress of drug development (Zhao
et al., 2011). By accumulating data on alterations in the quantity and
quality of various metabolic enzymes, TPs, and drug target proteins as-
sociated with physiologic and pathologic conditions, drug development
endeavors to generate medications that minimize drug-drug interactions,
exhibit reduced susceptibility to interindividual variations (including ge-
netic variability), and possess an expanded therapeutic range (Zhao
et al., 2011; Maeda and Sugiyama, 2013; Cheung et al., 2019). The uti-
lization of PBPK models facilitates informed decision-making and en-
hances the efficiency of drug approval processes (Rostami-Hodjegan,
2012; Jamei, 2016).
Recent advancements in mathematical modeling have revolutionized

the analysis of extensive clinical PK data accumulated over time. These
models facilitate the integration of PK data with in vitro metabolism and
transport data, enabling the quantification of their interrelationships. In
the context of drug-drug interactions (DDIs), the contribution of relevant
enzymes or TPs to the overall clearance of the victim drug, as well as the
strength of inhibition (1/Ki) exerted by the inhibitor on the enzyme or
TP, can be predicted using clinical reports. Notably, the withdrawal of

Shitara, Y. et al. 
J Pharmacol Exp Ther, 
311(1): 228-36 (2004) 

Shitara, Y. et al. 
J Pharmacol Exp Ther,
304(2): 610-6 (2003) 

Shitara, Y. and Sugiyama Y.
Pharmacol Ther,
112(1): 71-105 (2006)Gemfibrozil glucuronide

Gemfibrozil glucuronide

� 52 pa�ents died (US 31). 
� Among 31 pa�ents,
12 were given also gemfibrozil.

Cerivastatin
Dual substrates  

Gemfibrozil-
glucuronide
Dual inhibitors

Fig. 1. Drug interaction between cerivastatin and gemfibrozil. In 2001, a significant number of patients died from rhabdomyolysis after taking cerivastatin, leading to
its withdrawal from the market. Further investigations revealed that some of the patients who died were also using gemfibrozil, suggesting a potential drug interaction.
Subsequent studies demonstrated that gemfibrozil's metabolite, the glucuronide conjugate, acts as a potent inhibitor of CYP2C8, the primary metabolic enzyme of ceri-
vastatin, as well as inhibiting OATP1B, a liver uptake transporter (Shitara et al., 2013). This case highlighted the importance of considering not only metabolizing en-
zymes but also transporters as targets of drug interactions.
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cerivastatin from the market due to rhabdomyolysis highlighted the
significance of simultaneous inhibition of metabolic enzymes and TPs
(Shitara et al., 2013; Iwaki et al., 2019) (Fig. 1). Subsequent studies have
further elucidated the substantial interactions resulting from concurrent in-
hibition of TPs and metabolic enzymes in clinical practice (Yao et al.,
2018) (Fig. 2). Theoretical frameworks have been established to predict
instances of simultaneous dual inhibition (Fig. 2) (Ueda et al., 2001; Yao
et al., 2018; Iwaki et al., 2019). These clinical events have driven the de-
velopment of methodologies to predict DDIs and interindividual variabil-
ity arising from genetic polymorphisms, primarily based on in vitro
studies (Ueda et al., 2001; Asaumi et al., 2018; Yao et al., 2018; Taskar
et al., 2020; Chu et al., 2022). Regulatory authorities have started incor-
porating these predicted outcomes into drug package inserts, even in the
absence of direct clinical evidence (Kuemmel et al., 2020; Musuamba
et al., 2021). The integration of mathematical modeling in PK analyses
enhances our understanding of drug interactions and variability, facilitat-
ing informed decision-making in clinical practice.
We here want to compare the application of PBPK modeling with

the extended clearance concept (Gillette and .Pang, 1977; Shitara et al.,
2005; Zhao et al., 2012; Shitara et al., 2013; Fujino et al., 2018; Liang
and Lai, 2021). In pharmacology, clearance refers to the rate at which a
drug is eliminated from the body. The clearance concept was originally
proposed by two groups (Rowland et al., 1973; Wilkinson and Shand,
1975; Pang and Rowland, 1977). The clearance concept quantitatively
revealed how clearance can be influenced by various factors such as
liver and kidney function, enzyme activity, membrane permeability, and
blood flow to the organs involved in drug elimination. PBPK modeling
employs ordinary differential equations to describe the mass balance of
a drug in all organs, including the blood compartment. By numerically
solving these equations, drug concentration profiles in the blood and

organs can be described. Consequently, calculations such as the area un-
der the concentration-time curve (AUC) in the blood and in organs can
be performed. PBPK models are also capable of handling nonlinear ki-
netics. In contrast, the clearance concept involves integrating the ordi-
nary differential equations from zero to infinity to determine how the
AUC in blood and organs can be represented by specific parameters.
This method requires analytical integration and may pose challenges
when applied to cases involving nonlinear kinetics. Within the
realm of clearance concepts, the extended clearance concept (ECC)
quantitatively describes the influence of biomembrane permeability
by considering the transmembrane permeation process in elimina-
tion organs such as the liver and kidney (Gillette and .Pang, 1977;
Shitara et al., 2005, 2013). In contrast, the traditional clearance
concept often assumes rapid equilibrium in tissue distribution of
drugs. Considering these distinctions, PBPK modeling is particularly
suitable for describing the time profiles of drug concentrations in the
blood and tissues following drug administration, even in the presence
of nonlinear kinetics. If the goal is to describe AUC or average con-
centration in a linear condition, ECC can be employed to achieve this
objective.

Prediction of Changes in Hepatic Clearance with Simultaneous
Inhibition of Serial Clearance Pathway

In cases where parallel clearance pathways are involved, the DDI
guidance provides methods to predict hepatic clearance by considering
the in vitro Ki and unbound inhibitor concentration for each pathway,
while accounting for their respective contributions (fraction metabolized
value in the case of metabolism) (Maeda and Sugiyama, 2013; Kuem-
mel et al., 2020; Musuamba et al., 2021). However, the prediction of

Fig. 2. Effects of simultaneous inhibition of hepatic uptake and biliary excretion/metabolic processes. To accurately predict the impact of inhibitors on the hepatic
clearance of victim drugs due to drug-drug interactions, it is crucial to understand the rate-limiting processes involved in hepatic clearance. These processes encompass
hepatic uptake, biliary excretion, metabolism, and efflux via the basolateral membrane. This figure is based on the extended clearance concept and presents both theo-
retical developments and empirical demonstrations using animal experiments from 2001, shedding light on the conditions under which drug-drug interactions have the
greatest effect by inhibiting multiple processes (Ueda et al., 2001). Estimating the unbound inhibitor concentration in the cell remains a challenge when applying this
methodology.

Mechanism-Based Predictive Approaches for Hepatic Clearance 1069

 at A
SPE

T
 Journals on N

ovem
ber 26, 2023

dm
d.aspetjournals.org

D
ow

nloaded from
 

http://dmd.aspetjournals.org/


simultaneous inhibition of serial pathways, such as uptake/metabolism
or uptake/biliary excretion in the liver [e.g., organic anion transporting
polypeptides (OATPs)/cytochrome P450s or OATPs/MRP2], remains a
challenge. To achieve accurate predictions, it is crucial to identify the
rate-determining process among elementary processes, including uptake,
basolateral efflux, biliary excretion, and metabolism, that significantly
contribute to hepatic clearance (Fig. 2). The theoretical development
and experimental proof of this methodology based on the ECC was al-
ready published in 2001 (Ueda et al., 2001). However, estimating the
intracellular unbound inhibitor concentration poses a major obstacle in
applying this methodology, particularly when predicting intracellular en-
zyme and efflux TP-mediated inhibitions and inductions (Ueda et al.,
2001; Asaumi et al., 2018; Yao et al., 2018).
Traditionally, it has been assumed that intracellular and extracellular

concentrations of unbound drugs are equal in the field of PK. However,
emerging evidence has highlighted the involvement of active TPs in
drug uptake and efflux processes, challenging this assumption (Giaco-
mini et al., 2010; Giacomini and Sugiyama, 2023). It is now recognized
that intracellular and extracellular concentrations of drugs may not be
equal. To evaluate active and passive uptake clearance separately under
linear conditions, the initial rate of drug uptake into hepatocytes at vari-
ous drug concentrations can be measured, enabling the determination of
active uptake clearance (Vmax/Km) and passive uptake clearance
(PSinf,dif) (Yabe et al., 2011). Estimating tissue-to-plasma unbound
concentration ratio (Kpuu) values has been proposed by assuming that
passive transport clearance is the same for both uptake (PSinf,dif) and
efflux (PSeff,dif). However, this assumption is not valid for charged
compounds. Notably, hepatocytes possess an inside negative membrane
potential of approximately –40 mV, leading to PSinf,dif < PSeff,dif for
anions and PSinf,dif > PSeff,dif for cations. To address this, we have
proposed a methodology for estimating hepatocyte-to-medium unbound

concentration ratio (Kpuu values) that considers the membrane potential
(Yoshikado et al., 2017). Since then, various advancements have been
made in the measurement of Kpuu values (Guo et al., 2018), recom-
mending the assessment of Kp values in hepatocytes in the presence of
albumin/plasma and the estimation of in vivo Kpuu through intracellular
and extracellular binding measurements (Riccardi et al., 2017; Di et al.,
2021).

Revisiting the Free Hypothesis for Improved In Vitro-In Vivo
Extrapolation: Significance of Measuring Unbound Uptake

Clearance in the Presence of Physiologic Albumin Concentration

In pharmacology, the “free hypothesis” refers to the assumption that
the unbound (free) concentration of a drug in the bloodstream is the
pharmacologically active form. According to this hypothesis, only the
unbound fraction of a drug is available for distribution to tissues, metab-
olism, and elimination processes. While many studies support these hy-
potheses, there have been challenges to their validity dating back 35 to
40 years (Forker and Luxon, 1981; Weisiger et al., 1981; Tsao et al.,
1986). However, limitations in demonstrating these hypotheses in hu-
man PK studies hindered further investigation. Recently, this research
area has regained attention, particularly in IVIVE studies of hepatic
clearance using anionic drugs. It has been observed that the predicted
hepatic clearance of highly protein-bound compounds is underestimated
based on the free hypothesis, and this underestimation can be improved
by measuring hepatic uptake in vitro in the presence of physiologic al-
bumin concentrations (Fig. 3) (Poulin et al., 2012; Miyauchi et al.,
2018; Bowman et al., 2019; Kim et al., 2019; Miyauchi et al., 2022).
This phenomenon is explained by considering a model in which a bind-
ing site on the hepatocyte surface interacts with albumin, facilitating the
dissociation of the free drug from albumin on the cell surface and sub-
sequent uptake into cells (Fig. 4) (Miyauchi et al., 2018; Kim et al.,

Fig. 3. Improvement of IVIVE of hepatic uptake clearance by considering albumin-mediated hepatic uptake mechanism. (A) The measurement of hepatic uptake clear-
ance (PSinf) for unbound drugs in the absence of medium albumin. (B) The estimation of PSinf at physiologic albumin concentration (5%) using the facilitated disso-
ciation model based on experiments with varying albumin concentrations. By accounting for albumin-mediated hepatic uptake, the IVIVE of hepatic clearance was
improved, though not perfect, compared with the in vivo intrinsic hepatic clearance (fb Clint) (Kim et al., 2019). The experiment involved various compounds such as
PTV, ATV, FLV, CRV, GLB, VST, RPG, BOS, and NTG. ATV, atorvastatin; BOS, bosentan; CRV, cerivastatin; FLV, fluvastatin; GLB, glibenclamide; NTG, nate-
glinide; PTV, pitavastatin; RPG, repaglinide; VST, valsartan.
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2019). This model is referred to as the albumin-mediated facilitated dis-
sociation model. Saturable binding of albumin to the hepatocyte surface
occurs with Kd values ranging from 25 to 160 lM (Weisiger et al.,
1981; Tsao et al., 1986; Miyauchi et al., 2018; Kim et al., 2019; Miyau-
chi et al., 2022). Other research groups have also attempted to improve
the accuracy of IVIVE for highly plasma protein-bound drugs by measur-
ing hepatic clearance in the presence of plasma or physiologic concentra-
tions of albumin, utilizing mechanism-based models (Poulin et al., 2012;
Poulin and Haddad, 2018; Miyauchi et al., 2022). Bi et al. (Bi et al.,
2021) employed 19 OATP1B compounds to determine unbound hepatic
uptake clearance in the absence of plasma, based on our proposed albu-
min-mediated facilitated dissociation model. This relationship is well
explained by the facilitated dissociation model, but not by other fu,
p-adjusted models (Bi et al., 2021). However, a recent study by Yin et al.
(Yin et al., 2022) raises questions regarding the phenomenon of albumin-
mediated hepatic uptake, suggesting it may be an artifact stemming
from the nonspecific binding of the albumin-drug complex to the cell
surface. Further discussions and investigations are needed to address
this concern.

The Mechanism Through Which In Vivo Drug-Drug Interactions
Cannot Be Accurately Predicted Using Ki Values Obtained from

In Vitro Experiments

As the analysis of DDIs has accumulated, it has become evident that
in vitro parameters, such as Ki values, often do not accurately reflect
the in vivo situation. This discrepancy raises the question of why this
occurs. For instance, when studying the inhibition of OATP1B by cy-
closporin A, it was observed that preincubating OATP1B-expressing
cells or hepatocytes with cyclosporin A for 30 to 60 minutes resulted in
Ki values more than 10-fold lower than those measured without prein-
cubation (Shitara and Sugiyama, 2017; T�atrai et al., 2019; Izumi et al.,
2022). Although the Ki values obtained with preincubation are closer to
in vivo values, discrepancies between in vitro and in vivo measurements
still exist (Shitara and Sugiyama, 2017; Izumi et al., 2022). A proposed
mechanism, known as trans-inhibition, suggests that inhibition occurs
with stronger affinity from the hepatic cytoplasmic side, potentially ex-
plaining this time-dependent inhibition (Shitara and Sugiyama, 2017;
T�atrai et al., 2019; Lowjaga et al., 2021; Izumi et al., 2022). The hy-
pothesis of simultaneous occurrence of cis-inhibition and trans-inhibition
helps to explain the decrease in Ki value with preincubation time, as
precisely described by Nozaki and Izumi in this special issue (Nozaki

and Izumi, 2023). By considering this inhibition mechanism, the lower
in vivo Ki values compared with those obtained from in vitro preincu-
bation experiments may be quantitatively explained (Shitara and Sugi-
yama, 2017; Izumi et al., 2022).
In the case of mechanism-based inhibition of drug-metabolizing en-

zymes, clinical trials have shown significant variation in the degree
of DDI when the timing of inhibitor administration and substrate drug
is shifted. This phenomenon has been successfully captured through
PBPK modeling that incorporates the mechanism-based inhibition
mechanism (Honkalammi et al., 2011; Kim et al., 2017; Varma et al.,
2019). Incorporating the trans-inhibition mechanism of inhibitors de-
scribed here into the PBPK model holds the potential to enhance IVIVE
with improved predictability (Shitara and Sugiyama, 2017).
The current quantitative prediction of DDIs based on in vitro Ki val-

ues remains inadequate, as previously mentioned. However, there have
been significant advancements in the development of successful meth-
ods for predicting the magnitude of DDIs associated with OATP1B us-
ing endogenous biomarkers like coproporphyrin-I (Chu et al., 2018;
Rodrigues et al., 2018; Barnett et al., 2019; Mochizuki et al., 2022b;
Yoshikado et al., 2022). These methods have even demonstrated their ef-
ficacy in predicting changes in PK among special populations (Lin et al.,
2023). It is important to note that the aforementioned approach becomes
feasible only during the clinical phase of a project. In recent studies, re-
searchers have employed a “middle-out” method in PBPK modeling ap-
proach in preclinical models, including monkeys, to bridge the gap in
IVIVE and the application of scaling factors for PK predictions in the
early stages of drug discovery (Gu et al., 2020).

Advancing the Middle-Out Approach for PBPK Modeling
Methodology Based on Cluster Gauss-Newton Method

The CGNM algorithm, developed by Aoki et al. (Aoki et al., 2022),
offers a solution for optimizing parameters in PBPK models (Fig. 5).
PBPK models face challenges where some parameters may not be iden-
tifiable from available data, and initial parameter estimates for optimiza-
tion methods may not be readily available. In our research group, we
have employed CGNM to investigate nonlinear PK and DDIs using
PBPK models (Koyama et al., 2021; Mochizuki et al., 2022a; Yoshi-
kado et al., 2022). We have found that CGNM simplifies the process of
fitting PBPK models to available data, enabling a top-down approach to
derive in vivo parameters even for complex PBPK models by matching
the model with clinical PK data. However, we have observed a discrepancy

(Tsao SC et al. J. Pharmacokinet. Biopharm. 16: 165-181 (1986))

Uptake by free hypothesis Albumin mediated uptake

PSinf(predicted) = PS’inf
Kd + n[P]

Kd
+

(Kd + n[P]) (Km + [P])

Vmax n[P]

Alb AlbS + S

S

Kd

Kd,m Kd,m

(rapid)

inters��al

membrane

intracellularS
S

Albumin-mediated uptake;  Dissocia�on  of  drug from albumin is facilitated 
by binding of albumin to the cell surface.  Facilitated dissocia�on model

Fig. 4. Facilitated dissociation model (Tsao et al., 1986).
The facilitated dissociation model (Tsao et al., 1986) de-
scribes the uptake of drugs with high albumin-binding
properties into hepatocytes through two pathways: un-
bound drugs and albumin-bound drugs. This model sug-
gests that the drug-albumin complex interacts with the
hepatocyte surface, leading to conformational changes in
albumin and an increase in the local free drug concen-
tration at the hepatocyte surface. The albumin bound by
drugs competitively binds to the same sites on the hepa-
tocyte surface as free albumin. The equations in the
figure are derived based on these assumptions.
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between the mathematically optimal parameter combinations obtained
through CGNM and the knowledge derived from in vitro experiments.
Identifying the cause of this discrepancy poses a significant challenge. It is
likely that the simplifying assumptions made during model development
contribute to this bias. As it is impractical to include all drug absorption,
distribution, metabolism, and excretion and physiologic mechanisms, our
model may not fully capture the complexity of PK. Consequently, the pa-
rameter combinations that appear mathematically optimal may be biased
due to the omission of relevant mechanisms during model building, raising

concerns about their biologic accuracy. In contrast, the conventional bot-

tom-up approach of IVIVE often requires the use of scaling factors to align

predictions with in vivo PK observations. This discrepancy arises due to

various factors, including variations in measured values from in vitro exper-

imental systems under different conditions and the inability of these

systems to fully replicate physiologic processes. For example, extrapolating

in vitro hepatic uptake of drugs with high plasma albumin binding to

in vivo scenarios based on the free hypothesis, as discussed earlier (Miyau-

chi et al., 2022), may lead to inconsistencies. Overall, the development

of PBPK models using the CGNM approach presents a promising

advancement in overcoming parameter optimization challenges. Addressing

the discrepancies between mathematically optimal parameter combinations

and knowledge derived from in vitro experiments remains a complex task,

emphasizing the need for careful consideration of model assumptions and

the limitations of in vitro systems.
To address the inconsistencies between top-down and bottom-up ap-

proaches, the middle-out approach, which combines both approaches,
has gained popularity. The middle-out approach aims to obtain PBPK

Cluster Gauss-Newton Method (CGNM)
Find multiple possible solution of nonlinear least squares problem.

1

Conventional method (e.g. Levenberg–Marquardt method)
• Requires appropriate initial value for parameters.
• Obtains only a single set of optimized parameters.
• Requires derivatives (Jacobian)
• Has to start with different initial parameters 

Cluster Gauss-Newton method
• Requires only setting wide ranges for initial 

values of parameters.
• Obtains multiple sets of optimized parameters.
• Can estimate many unknown parameters.

Initial
value 2

Vd: 2.1

CL: 12

Conventional Method

The single
initial value

Vd:       2

CL:      10

Only the single
estimated value

Vd:       4

CL:      10

The range of 
initial value

Vd: 1 3

CL: 0.1 100

Initial
value 1

Vd: 1.4

CL: 22

Cluster Newton Method

Estimated 
value 2

Vd: 3.5

CL: 10.2

Estimated 
value 1

Vd: 3.3

CL: 17

Input
O

ut put

Cluster Gauss-Newton method

Fig. 5. Cluster Gauss-Newton method. CGNM is an algorithm designed to find multiple approximate minimizers for nonlinear least squares problems, with applications to pa-
rameter estimation in pharmacokinetic models. This figure demonstrates the use of PBPK models in drug development to showcase the computational efficiency and robustness
of CGNM compared with the standard Levenberg–Marquardt method, as well as state-of-the-art multistart and derivative-free methods (Aoki et al., 2022).

In Top-Down approach CGNM finds parameter sets that minimise SSR

SSSP = { ( ) − (in−vitro km_met)} + { ( ) − (in−vitro km_uptake)}

Sum of Squares Parameter-deviation ( closer to in-vitro value)

In Middle-out approach CGNM finds parameter sets that minimise SSR+SSP

SSR = ( ( ( ) − ( ∗)) + ( ( ( ) − ( ∗)) + ⋯+ ( ( ( ) − ( ∗ ))

Sum of Squares Residual (smaller the better fit)

R-package available in CRAN
https://cran.r-project.org/web/packages/CGNM

Matlab code available in Matlab central
https://www.mathworks.com/matlabcentral/fileexchange/68798-cluster-gauss-newton-method

Fig. 6. Middle-out approach in CGNM. In the middle-
out approach using CGNM, the minimization process
goes beyond minimizing the SSR and also includes min-
imizing the SSP, such as Km values obtained in vitro
and those estimated from blood concentration-time pro-
files. This approach aims to refine the parameter estima-
tion using CGNM (Yoshikado et al., 2022). SSR, sum
of squares of residuals; SSP, sum of squares of differ-
ences between parameters.
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model fits that are consistent with both in vitro and in vivo data. One
possible strategy is to fit the PBPK model to a combined dataset of
in vivo and in vitro data. This can be mathematically formulated, as il-
lustrated in Fig. 6, and can be viewed as setting a prior in Bayesian sta-
tistics (Cole et al., 2014) or as a form of regularization in the frequentist
sense (Bishop, 1995). However, due to the inherent differences between
in vitro and in vivo data, simply pooling the data may not be sufficient.
It may be crucial to assign appropriate weights to the data, which intro-
duces subjectivity into the analysis. Our objective is to establish a gen-
eral strategy or guideline for conducting middle-out approach analyses.
We aim to achieve this by applying the proposed approach to various
clinical and in vitro experimental data sets, as well as different PBPK
models (Yoshikado et al., 2022) (see Fig. 6). Importantly, it should be
emphasized that in top-down and middle-out analyses, the mathematically
optimal solution (minimum sum of squared residuals) may not always be
biologically or pharmacokinetically valid. In some cases, a solution with
a slightly higher sum of squared residuals may be deemed more bi-
ologically plausible. By investigating the middle-out approach and
its application to diverse datasets and models, our research aims to

provide valuable insights and establish guidelines for effectively in-
tegrating in vitro and in vivo data in PBPK modeling. This will contrib-
ute to improved accuracy and reliability in optimizing PBPK models for
various applications.

Target-Mediated Drug Disposition Analysis Using the PBPK
Model

In this section, we demonstrate the application of CGNM to analyze
the nonlinear PK of a small molecule drug exhibiting target-mediated
drug disposition (TMDD). TMDD refers to the phenomenon where
drug binding to a molecular target influences the drug's disposition, re-
sulting in dose- and time-dependent PK profiles (An, 2017; Lee et al.,
2023). TMDD was first described by Levy in 1994 using warfarin as an
example (Levy, 1994). While TMDD has been extensively studied in
the context of biologics, such as antibodies, its role in small molecule
drugs is also important and warrants quantitative prediction (Dua et al.,
2015). To achieve this, we focus on analyzing specific examples and as-
sessing the contribution of saturable binding to molecular targets in

Fig. 7. (A) TMDD-PBPK model of bosentan (without considering TMDD). A PBPK model is developed to incorporate saturation mechanisms for target binding, as
well as other pharmacokinetic process OATP1B-mediated hepatic uptake. (B) The model parameters are optimized by fitting the model to published data showcasing
nonlinear pharmacokinetic profiles over a wide dose range (Koyama et al., 2021). First, when the model does not consider TMDD, it fails to adequately explain the
plasma concentration-time profiles at the lowest dose (10 mg i.v.) as shown by a red arrow (Sato et al., 2018).
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comparison with other saturation mechanisms in PK, such as saturation
of metabolism or transport in the liver or intestinal tract.
As a model case, we present the analysis of bosentan, a small mole-

cule drug displaying TMDD (Koyama et al., 2021). A PBPK model
was developed to incorporate saturation mechanisms for target binding
and other pharmacokinetic processes, including hepatic uptake satura-
tion (Koyama et al., 2021; Lee et al., 2023). The parameters of the
PBPK model were optimized using CGNM (Aoki et al., 2022), fitting
the model to published data that exhibited nonlinear PK profiles across
a wide dose range. Initially, we analyzed a model without molecular tar-
get binding and found that it failed to explain the plasma concentration-
time profiles at the lowest dose (10 mg i.v.) (Fig. 7) (Sato et al., 2018).
Consequently, CGNM was employed to optimize 10 parameters, includ-
ing molecular target binding parameters (Kd, koff, Bmax) (Koyama
et al., 2021). In the case of bosentan, where the molecular target is ex-
pressed on various tissue endothelial cell membranes, the PBPK model
incorporated saturable binding parameters (Kd, koff, Bmax) to the mo-
lecular target compartment directly connected to the circulating blood
compartment (Koyama et al., 2021) (Fig. 7). The parameters of the
PBPK model were optimized by fitting the blood PK profiles reported
after intravenous and oral administration of bosentan across a wide
range of doses (Koyama et al., 2021). The CGNM-based analysis gener-
ated multiple optimized parameter sets, which were subsequently used
to simulate blood PK and in vivo molecular target occupancy profiles
(Fig. 8). Mathematical and statistical analyses were further performed to
evaluate the impact of dose selection on parameter estimation for bosen-
tan (Koyama et al., 2021) and warfarin (Lee et al., 2023). The optimized
parameter set successfully described the reported blood PK profile of
bosentan (Fig. 8).

When considering the findings from the TMDD analysis of warfarin
presented in this special issue (Lee et al., 2023), along with the
results obtained for bosentan, we observe that for drugs interacting
with molecular targets of high affinity and specificity, incorporating sat-
urating molecular target binding enables the prediction of in vivo mo-
lecular target occupancy profiles using only dose-dependent drug
concentration-time profiles across a wide dose range (Koyama et al.,
2021; Lee et al., 2023). Further analyses indicate the potential for more
precise prediction of the time profile of molecular target occupancy,
particularly if microdosing is employed as the initial dose in the dose-
escalation process during phase I clinical trials (Burt et al., 2020;
Koyama et al., 2021; Lee et al., 2023). By conducting additional valida-
tion studies on other small molecule drugs that exhibit TMDD, our aim
is to compile and present the characteristics of drugs for which molecu-
lar target occupancy can be reliably predicted in phase I clinical trials.
If successful, this approach has the potential to revolutionize the drug
development process, offering significant advancements in our ability to
predict and optimize the therapeutic effects of novel drug candidates.

Future Prospects

Numerous instances have been reported where the conventional
IVIVE approach, which involves simply scaling kinetic parameters from
in vitro experiments using physiologic factors, fails to quantitatively pre-
dict in vivo phenomena (Sato et al., 2018; Kim et al., 2019; Koyama
et al., 2021). The reasons behind these discrepancies are multifaceted, in-
cluding variations in measurements within in vitro experimental systems
under different conditions and the challenge of faithfully replicating

Fig. 8. TMDD-PBPK model of bosentan (considering TMDD). Using a PBPK model that incorporates the binding of bosentan to the molecular target, the parameters
are optimized by fitting the model to reported blood pharmacokinetic profiles after intravenous (A) and oral (B) administration over a wide range of doses. The
CGNM-based analysis generates multiple optimized parameter sets, which are then used to simulate both blood pharmacokinetic and in vivo molecular target occu-
pancy profiles. The optimized parameter set accurately describes the reported blood pharmacokinetic profile of bosentan and successfully predicts the time profile of
in vivo receptor occupancy as shown by a red arrow (Koyama et al., 2021).
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complex physiologic systems in vitro. As a result, the middle-out ap-
proach, which considers a range of in vitro measurements, is gaining
prominence over the pure top-down approach that solely seeks parameters
to explain clinical data. In this regard, the middle-out approach can lever-
age the CGNM algorithm for its implementation.
It is crucial to emphasize that poor IVIVE outcomes should not be

seen as failures but rather as opportunities to uncover hidden truths, fu-
eled by the curiosity of scientists. Such challenges drive researchers to
explore novel methodologies and approaches, ultimately leading to a
deeper understanding of the complex relationship between in vitro and
in vivo systems.
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