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Abstract8

Background: The

Q1

evolution

Q2

of influenza A viruses leads to the antigenic changes. Serological diagnosis of the
antigenicity is usually labor-intensive, time-consuming and not suitable for early-stage detection. Computational
prediction of the antigenic relationship between emerging and old strains of influenza viruses using viral sequences
can facilitate large-scale antigenic characterization, especially for those viruses requiring high biosafety facilities, such
as H5 and H7 influenza A viruses. However, most computational models require carefully designed subtype-specific
features, thereby being restricted to only one subtype.
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Methods: In this paper, we propose a Context-Free Encoding Scheme (CFreeEnS) for pairs of protein sequences,
which encodes a protein sequence dataset into a numeric matrix and then feeds the matrix into a downstream
machine learning model. CFreeEnS is not only free from subtype-specific selected features but also able to improve
the accuracy of predicting the antigenicity of influenza. Since CFreeEnS is subtype-free, it is applicable to predicting
the antigenicity of diverse influenza subtypes, hopefully saving the biologists from conducting serological assays for
highly pathogenic strains.
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Results: The accuracy of prediction on each subtype tested (A/H1N1, A/H3N2, A/H5N1, A/H9N2) is over 85%, and can
be as high as 91.5%. This outperforms existing methods that use carefully designed subtype-specific features.
Furthermore, we tested the CFreeEnS on the combined dataset of the four subtypes. The accuracy reaches 84.6%,
much higher than the best performance 75.1% reported by other subtype-free models, i.e. regional band-based
model and residue-based model, for predicting the antigenicity of influenza. Also, we investigate the performance of
CFreeEnS when the model is trained and tested on different subtypes (i.e. transfer learning). The prediction accuracy
using CFreeEnS is 84.3% when the model is trained on the A/H1N1 dataset and tested on the A/H5N1, better than the
75.2% using a regional band-based model.
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Conclusions: The CFreeEnS not only improves the prediction of antigenicity on datasets with only one subtype but
also outperforms existing methods when tested on a combined dataset with four subtypes of influenza viruses.
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Background32

In the immune system, antigen molecules are often specif-33

ically targeted by and bind with antigen receptors such34

as antibodies. It is an important mechanism of adaptive35

immunology in host organisms to defend against invad-36

ing pathogens like influenza viruses. The capacity of an37

antigen in binding with the receptors is called antigenic-38

ity. Hemagglutinin (HA) and neuraminidase (NA) are so39

far the only two membrane proteins known to character-40

ize the antigenicity of influenza viruses. Therefore, HA41

and NA are under constant antigenic drift pressure to42

escape the human immune system, as well as the flu vac-43

cines. The selection of flu vaccines is mainly dependent on44

the antigenicity of influenza viruses. Therefore, the rapid45

identification of influenza antigenic variants is crucial for46

an effective vaccination program.47

Serological diagnosis of influenza is usually conducted48

by hemagglutination inhibition (HAI) assays or micro-49

neutralization (MN) assays, serving as the gold standard50

for the antigenic correlations among antigens and antis-51

era. Regulatory agencies, such as the World Health Orga-52

nization (WHO) and Centers for Disease Control and53

Prevention (CDC), take the HAI assay titers of viruses54

as one of the primary measurements for vaccine effi-55

cacy, i.e. the ability of a vaccine to prevent disease in56

vaccinated individuals [1]. Thus, characterizing the anti-57

genicity of a viral strain is crucial for predicting the58

vaccine efficacy. However, such experiments are labor-59

intensive, time-consuming and not suitable for early-stage60

detection. Compared with laboratory-based serological61

diagnosis, computational prediction of antigenic dissim-62

ilarity using viral sequences enables large-scale anti-63

genic characterization of influenza viruses. Importantly,64

sequence-based computational methods make it possible65

to characterize the antigenicity of those highly virulent66

subtypes such as H5 and H7 influenza viruses, without67

requiring high biosafety levels.68

Smith et al. pioneered the analysis of antigenic clus-69

ters of influenza A/H3N2 from 1968 to 2003, by using the70

method of metric multidimensional scaling (MDS) to map71

the viral strains on a 2D map and group them into 11 clus-72

ters [2]. Since then, researchers have made efforts to apply73

machine learning techniques to the antigenicity analysis.74

Most machine learning algorithms, however, require the75

input to be numeric vectors of equal length. Encoding76

the non-numeric dataset (e.g. protein sequences repre-77

sented by letters) is, therefore, an important step for the78

performance of machine learning methods. Researchers79

have designed a variety of features to encode the viral80

sequences and then feed them into classification algo-81

rithms. For example, Liao et al. grouped amino acids based82

on their polarity, charge and aliphatic. Pairwise sequence83

comparisons were encoded into binary vectors accord-84

ing to the substitutions in the same or different groups.85

Regression models were then constructed to predict the 86

antigenic distances from the binary vectors [3]. Liao et al. 87

assumed that viral pairs with antigenic HAI titers larger 88

than 4-fold have significant differences in antigenicity, 89

and therefore should be treated as “variants” (i.e. dis- 90

tinct). Furthermore, Sun et al. extended the work by taking 91

antibody binding sites into consideration. A bootstrapped 92

ridge regression method was applied [4] and achieved 93

an average prediction accuracy of 83% on an influenza 94

A/H3N2 dataset. Du et al. calculated the differences in 95

12 structural and physiochemical features as a binary vec- 96

tor for each pair of HA sequences [5]. By integrating 97

those features, they predicted the antigenic relationship of 98

influenza A/H3N2 viruses with a Nav̈e Bayes classifier. To 99

improve the prediction, Qiu et al. incorporated the struc- 100

tural context of the HA protein for influenza A/H3N2, 101

reaching an accuracy of 87.5% [6]. 102

A major limitation of the above-mentioned strategies is 103

that they depend on subtype-specific features. Limited by 104

the difficulty and cost in doing experiments with those 105

highly pathogenic strains, the HAI dataset for H5, H7 106

and H9 subtypes are rather small. Only a few researchers 107

endeavored to analyze the antigenicity of those subtypes 108

computationally [7, 8]. Besides, the development of a 109

universal flu vaccine, i.e. a vaccine providing durable pro- 110

tection against several strains, is a goal that has been long 111

sought after. Although the universal vaccine might still 112

be a long shot, finding the antigenic patterns shared by 113

multiple influenza subtypes would be one step towards 114

it. Peng et al. analyzed the sequence mutation patterns 115

of nine representative HA subtypes on the HA1 pro- 116

tein, and they found that these HA subtypes share similar 117

patterns of moving average position information entropy 118

(MAPIE) [8]. This provided a basis for developing a uni- 119

versal computational model for predicting the antigenicity 120

of influenza. They also proposed a regional band-based 121

method to predict the antigenicity of influenza for diverse 122

subtypes, but the accuracy was only 75% on the com- 123

bined dataset of multiple subtypes of influenza viruses. 124

Although the defined regional bands are independent 125

of the viral subtype, some of them are hardly corre- 126

lated with antigenic variation, as was reported by Lees 127

et al. [9]. Insufficient conserved information about the 128

antigenicity of influenza viruses could hamper the pre- 129

diction. Transfer learning could shed light on addressing 130

this issue. Many examples have justified the feasibility 131

for transfer learning, i.e. applying the knowledge dis- 132

covered from previous tasks to a target task with fewer 133

high-quality training data [10, 11]. Given the possible 134

shared sequence patterns of multiple influenza subtypes, 135

it is also plausible to develop a framework to apply the 136

knowledge learned in H1 and H5, where there are large 137

qualified serological assays data, to other subtypes with 138

limited data. 139
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The performance of computational models mainly140

depends on two factors: the quality of the input, i.e. data141

representation and the learning algorithm. A represen-142

tation which keeps more relevant information about the143

predicting target will benefit the performance of machine144

learning models [12]. In this paper, we propose a method145

called Context-Free Encoding Scheme (CFreeEnS) to146

encode protein sequence pairs into a numeric matrix.147

CFreeEnS takes advantage of rich information about148

the physiochemical and structural properties of amino149

acids. This encoding scheme keeps information about150

conserved properties of amino acids, which makes it151

possible for learning methods (e.g. random forest) to152

capture the cross-subtype antigenic pattern of influenza153

viruses. Using random forest classifier as a downstream154

learning method, the predicting accuracy on every sub-155

type (A/H1N1, A/H3N2, A/H5N1 or A/H9N2) is over156

85.0%. On the influenza A/H5N1 dataset, it reaches157

91.5%. The results show that CFreeEnS (integrated with158

random forest) outperforms other methods that use159

carefully designed subtype-specific features. On the com-160

bined dataset, the average testing accuracy of CFreeEnS161

reaches 84.6%, higher than 75.1% of the regional band-162

based universal model [8]. Besides, we investigate the163

performance of CFreeEnS in transfer learning. Specif-164

ically, we use a testing dataset with a subtype of165

influenza A viruses different from the training dataset.166

The highest accuracy prediction accuracy is 84.3% when167

the model is trained on the A/H1N1 dataset and tested168

on the A/H5N1. The proposed CFreeEnS uses substi-169

tution matrices in the AAIndex database [13]. Then,

Q3

170

we systematically evaluated the performance of all the171

available indexes. By analyzing the performance patterns172

of those indexes, we found several physiochemical and 173

biochemical properties could be closely related to the 174

antigenicity of influenza viruses, regardless of viral sub- 175

types. The antigenic patterns of diverse influenza subtypes 176

may give insights into conserved mechanisms of influenza 177

virulence, thereby paving the way for a universal vac- 178

cine to provide protection against multiple subtypes of 179

influenza viruses. 180

Methods 181

Many machine learning algorithms, including deep neu- 182

ral network architectures, require an input of equal-length 183

numeric vectors. A general pipeline for a machine learn- 184

ing project is shown in Fig. 1a. A non-numeric dataset F1185

should first be encoded into a numeric feature matrix X 186

through some encoding scheme or handcrafted feature 187

scores. Then, the numeric dataset X and label vector Y 188

can be fed into machine learning models (e.g. deep neural 189

networks) to minimize a loss function. The models should 190

be evaluated with methods such as cross-validation for 191

a separatetesting dataset. The performance of machine 192

learning methods largely relies on the choice of data repre- 193

sentation. Different representations can entangle and hide 194

variant explanatory factors of the data. 195

In bioinformatics, encoding the symbolic amino acid 196

data of protein sequences faithfully is an important step 197

to improve the performance of model prediction. A good 198

encoding scheme should preserve the information closely 199

related to the problem. Although expert domain knowl- 200

edge regarding the biological problem or the properties 201

of proteins can benefit designing good encoding schemes, 202

an encoding scheme requiring less expert domain knowl- 203

edge and implementing more generic priors will help the 204

a

b

Fig. 1 A pipeline for machine learning projects and illustration for CFreeEnS. a Encoding a non-numeric dataset into equal-length numeric vectors is
necessary for both traditional machine learning models and deep neural networks. b CFreeEnS encodes m aligned protein sequence pairs of length
l with k substitution matrices, resulting in a numeric feature matrix X with dimension m × k × l
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automation of data-driven learning. The designing of an205

encoding scheme requiring less expert knowledge is also206

in line with the quest for artificial intelligence [12].207

Here, we propose a context-free encoding scheme for208

pairwise protein sequences, named CFreeEnS, to convert209

protein sequence pairs into numeric vectors. CFreeEnS,210

based on the the published similarity matrices of amino211

acids, can capture the most important properties regard-212

ing the similarity of sequence pairs without designing213

features case-by-case. The representation of amino acids214

are constructed from amino acids level, involving differ-215

ent physiochemical and biological properties. Figure 1b216

shows how CFreeEnS works. For a batch of aligned217

protein sequences, suppose there are m sequence pairs218

with equal length l after alignment. Each pair pi, where219

(i = 1, 2, ..., m), can be encoded using k substitution matri-220

ces Ma
20×20(a = 1, 2, ..., k). The score of pia at position j is

Q4

221

calculated as [14]:222

pia[ j] =
{(

Ma
A1,A1

+Ma
A2,A2

)
−2Ma

A1,A2
, forA1!=gap and A2! = gap

λ, otherwise

(1)

where A1 and A2 are the amino acids at position j223

(j = 1, 2, ..., l) of the two sequences respectively; Ma
x,y is224

the score for amino acid x, y in substitution matrix Ma.225

A penalty λ is encoded for gaps. Then, pia is a numeric226

vector with length l. Algorithm 1 shows how CFreeEnS227

encodes a protein sequence pair using one substitution228

matrix.229

Algorithm 1 CFreeEnS for a sequence pair pi with
sequences s1 and s2

1: function CFREEENS(s1, s2, Ma)
2: Input: protein sequences s1 and s2 that are pre-aligned;

a substitution matrix Ma.
3: Output: a numeric vector for the protein sequence pair

encoded by Ma.
4: assert len(s1) == len(s2)
5: declare pia = [ ]
6: for j = 1 to len(s1) do
7: A1 = s1[ j]
8: A2 = s2[ j]
9: if A1! =“-” & A2! = “-” then

10: � “-” stands for a gap in the aligned protein
sequences

11: pj = M[A1, A1] + M[A2, A2] − 2*M[A1, A2]
12: else
13: pj = λ

14: pia.append(pj)
15: return pia

By stacking k such vectors [ pi1, pi2, ..., pia, ..., pik], we can 230

get the score matrix for sequence pair pi. Stacking the m 231

instances together, an m × k × l scoring matrix X for the 232

dataset is generated. Using CFreeEnS, a set of symbolic 233

sequence pairs can be converted into numeric vectors 234

with equal-length and then fed into machine learning 235

models. 236

Currently, there are k = 94 substitution matrices in 237

the AAIndex database, preserving various physicochem- 238

ical and biochemical properties of amino acid pairs [13]. 239

This database provides an opportunity for systematically 240

checking all substitution scoring matrices to select the 241

most effective ones. 242

Application 243

Problem formulation 244

Sequencing has become cheap and fast. Therefore, 245

we assume that HA1 protein sequences of the exist- 246

ing influenza viruses are available. Compared to viral 247

sequences, the HAI data is much less, because it’s more 248

expensive and time-consuming to obtain. The problem is 249

how to accurately predict the antigenic distances based on 250

the HA1 sequences of influenza viruses. 251

Instead of designing features for each subtype, we use 252

CFreeEnS to encode protein sequences of viral pairs into 253

a dissimilarity matrix X. The antigenic distances Y can be 254

measured by the HAI assays. Referring to expert knowl- 255

edge in this field, a distance threshold θ for judging two 256

viral strains can be decided. Subsequently, the antigenic 257

distances of viral pairs Y are discretized into a binary 258

relationship vector Y ∗ as illustrated in Eq. (2), 259

Y ∗(i, j) =
{

0, if d(i, j) < θ

1, otherwise (2)

where d(i, j) is antigenic distance between viral strain i 260

and j; 0 represents “similar” and 1 represents “distinct” 261

between the two viral strains i and j. 262

After encoding, we use a random forest, which is effi- 263

cient and robust in handling thousands of input vari- 264

ables without manual selection of features [15], as a 265

downstream learning method. The work is implemented 266

using Python 3.6.4. A RandomForestRegressor in the 267

sklearn.ensemble is used for training the model [16]. 268

To avoid over-fitting, the maximum depth of trees is 269

restricted to nine and all other parameters are set to 270

default. The model is evaluated using metrics, including 271

accuracy, precision, recall and F-score. Also, the learning 272

curves regarding the mean-squared-log-error of training 273

and testing datasets have been plotted to diagnose bias 274

and variance of the computation model. 275

Datasets 276

The proposed method for predicting antigenicity of 277

influenza viruses does not rely on any subtype-specific 278
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feature. Therefore, it is universally applicable to all279

influenza subtypes. In this paper, the model is trained280

and tested on four subtypes which have drawn atten-281

tion recently, namely A/H1N1, A/H3N2, A/H5N1 and282

A/H9N2.283

284

Antigenic data285

Antigenic HAI assay data of the four influenza viruses286

were collected and used to train computational models287

for predicting the antigenic distances of influenza viral288

pairs [8]. The Archetti-Horsfall distance (dAH) is taken289

as antigenic distance between a pair of viral strains [17],290

which has been reported to be more robust and less291

dependent on antigenic factors than other measurements292

[18]. The dAH between viral strains i and j is calculated293

in Eq. (3).294

dAH(i, j) =
√

HiiHjj

HijHji
(3)

where Hij is the HI titer of viral strain i relative to antis-295

era raised against viral strain j. The antigenic distances of296

viral pairs Y are then discretized into a binary relation-297

ship vector Y ∗ with a threshold of θ = 4 [3] as illustrated298

in Eq. (2). The estimated antigenic distances Ŷ vector can299

be inferred from X by training regression models, and300

then discretized with the same threshold to obtain the301

estimated binary relationship vector Ŷ ∗.302

Using the dAH measure, distances of 355, 791, 293 and303

118 antigenic pairs were calculated for influenza A/H1N1,304

A/H3N2, A/H5N1 and A/H9N2 viruses, respectively. The305

percentages of distinct viral pairs in total viral pairs are306

listed in Table 1. The influenza A/H1N1 has approxi-T1 307

mately equal number of similar and distinct viral pairs,308

while the influenza A/H9N2 has more distinct pairs,309

around 68% in all the viral pairs. The imbalance between310

the similar and distinct pairs in the influenza A/H9N2311

dataset may reduce the effectiveness of the predicting312

method. For the combined dataset, mixing antigenic data313

from all the four subtypes, the percentage of distinct314

viral pairs is 52% in all the viral pairs, which means the

Q5

315

Table 1 Datasets for training and testing the predicting modelt1.1

t1.2 Subtype Number of sequences T D/T HA1 lengths

t1.3 H1N1 68 355 0.5 327

t1.4 H3N2 621 791 0.47 329

t1.5 H5N1 148 293 0.57 320

t1.6 H9N2 29 118 0.68 317

t1.7 Combined 866 1557 0.52 340

1T: Total number of viral pairs;t1.8
2D: The number of antigenic distinct viral pairs;t1.9
3Combined: The combined dataset of H1N1, H3N2, H5N1 and H9N2t1.10

combined dataset has roughly balanced “similar” and 316

“distinct” viral pairs. 317

318

HA1 protein sequences 319

The HA1 protein sequences, the immunologic part of 320

HA protein, of those viruses involved in HAI assays were 321

derived from the Influenza Research Database [19]. For 322

subtype-specific predictive models, the HA1 sequences 323

were aligned according to subtypes. The lengths of 324

HA1 sequences are 327, 329, 320 and 317 for influenza 325

A/H1N1, A/H3N2, A/H5N1 and A/H9N2 respectively. 326

For a universal model, HA1 sequences of all the four sub- 327

types were mixed before being aligned. The length is 340 328

after the alignment, which were conducted using MAFFT 329

v7.245 with the FFT-NS-2 progressive strategy [20]. The 330

antigenic data and HA1 sequences are publicly available 331

in supplementary materials. Table 1 is a summary of the 332

datasets for training and testing the computational model. 333

Model evaluation 334

For each dataset, the model is trained and tested with 10- 335

fold cross validation. Assessment of the performance is 336

based on the average of the following evaluation metrics: 337

Accuracy = TP + TN
TP + FP + TN + FN

(4)

338

Precision = TP
TP + FP

(5)
339

Recall = TP
TP + FN

(6)
340

F-score = 2 ∗ precision × recall
precision + recall

(7)

Here, TP, TN, FP and FN denote true positive, true neg- 341

ative, false positive and false negative in the confusion 342

matrix obtained from Y ∗ and Ŷ ∗. 343

For a dataset of a single subtype, we use only one sub- 344

stitution matrix to encode the dataset. All the available 345

94 substitution matrices are used for evaluation. And 346

then, those matrices resulting in the optimal predicting 347

model with the highest accuracy are used to encode the 348

combined dataset with various subtypes. 349

Results 350

Predictions on datasets with single subtype 351

For each dataset with a single subtype, namely A/H1N1, 352

A/H3N2, A/H5N1 or A/H9N2, all the 94 substitution 353

matrices were used to train a random forest with the 354

same parameters. Each dataset has a distinct substitution 355

matrix resulting in the highest testing accuracy, namely 356

QU_C930102 for influenza A/H1N1, NIEK910102 for 357

A/H3N2, GRAR740104 for A/H5N1 and WEIL970102 for 358

A/H9N2. The results of testing accuracy are visualized 359
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in a line chart (Fig. 2). Overall, using only one substitu-F2 360

tion matrix to encode the dataset, the testing accuracy has361

small standard deviation (< 1.5%) in each dataset, except362

for A/H9N2. The strategy has the best performance on the363

A/H5N1 dataset with an average testing accuracy of 88.2%364

(± 1.3%), but the worst on the A/H9N2 dataset with the365

accuracy of 78.2% (± 2.6%). The imbalance in the A/H9N2366

dataset with 68% distinct viral pairs could partly explain367

the lower performance.368

The best predicting accuracy score for each subtype369

is greater than 85%, reaching 91.5% on the A/H5N1370

dataset. Models obtaining the best performance are based371

on different substitution matrices, namely QU_C930102372

for A/H1N1, NIEK910102 for A/H3N2, GRAR740104 for373

A/H5N1 and WEIL970102 for A/H9N2. In QU_C930102,374

the matrix was inferred from the contacts of main chain375

atoms [21]. NIEK910102 is a structure-derived correlation376

matrix considering the amino acid specific main-chain377

torsion angle distributions [22]. GRAR740104 combines378

mean chemical distances of properties: composition,379

polarity, and molecular volume [23]. WEIL970102 is a380

matrix obtained by subtracting the BLOSUM62 from the381

WAC matrix [24].382

In addition, we compared the proposed encoding strat-383

egy CFreeEnS with the mutation-counts-based method384

proposed by Liao et al. [3] and regional band-based385

method proposed by Peng et al. [8] on the same datasets.386

It is worth noting that the methods use not only different387

encoding schemes, but also distinct training models. To388

demonstrate that our CFreeEnS is more accurate than the389

subtype-specific handcrafted ones, we also adapted the390

methods in literature by using random forest as the same391

training model, denoted as MutCounts and RegionBand 392

respectively. 393

Figure 3 shows the comparison of F-score among F3394

five strategies on the four datasets with single-subtype 395

influenza viruses. CFreeEnS obtains the highest F-score 396

among the five strategies on all the four datasets 397

(besides the combined dataset). Accuracy, precision 398

and recall are also evaluated (Table 2). Although T2399

CFreeEnS sometimes ranks the second or third in 400

precision or recall, it always obtains the highest accu- 401

racy and F-score. The experiments demonstrate that 402

our proposed encoding scheme CFreeEnS outperforms 403

subtype-specific features MutCounts and RegionBand in 404

predicting the antigenicity of influenza viruses within the 405

same subtype. 406

Prediction on the combined dataset with diverse subtypes 407

For datasets with a single subtype, we traversed all the 408

available substitution matrices. Each dataset has a distinct 409

substitution matrix resulting in the highest testing accu- 410

racy, namely QU_C930102, NIEK910102, GRAR740104, 411

and WEIL970102. The four substitution matrices, derived 412

from different properties of amino acids, are selected as 413

the optimal substitution matrices in predicting antigenic- 414

ity of influenza viruses, denoted as CFreeEnS-4 to be 415

distinguished from CFreeEnS which uses one substitution 416

matrix. With CFreeEnS-4, the 866 viral pairs are encoded 417

as a 866 × 4 × 340 matrix. To feed the data into machine 418

learning models, it was flattened as a 866 × 1360 matrix, 419

where the 4 feature vectors for each instance were stacked 420

by column. Here, we used random forest with the same 421

restrictions on maximum depth of trees, i.e. 9. 422

Fig. 2 Evaluation of all substitution matrices on datasets of single subtype. The 94 substitution matrices have an average testing accuracy higher
than 80% with small standard deviation, except on A/H9N2. Each dataset has a distinct substitution matrix resulting in the highest testing accuracy
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Fig. 3 Comparing F-score of models on datasets with singe subtype influenza viruse

Table 3 presents the performance comparison amongT3 423

five strategies on the combined dataset. With 10-424

fold cross-validation, the average testing accuracy of425

CFreeEnS-4 on the combined dataset is 84.6%, higher than426

the second highest accuracy of 75.1% using the regional427

band-based method.428

Table 2 Performance comparison among five strategies on four
single subtype datasets

t2.1
t2.2

t2.3 Dataset Methods Accuracy Precision Recall F-score

t2.4 H1N1 Liao et al. 0.742 0.717 0.877 0.788

t2.5 MutCounts 0.824 0.802 0.884 0.840

t2.6 Peng et al. 0.661 0.671 0.711 0.683

t2.7 RegionBand 0.706 0.669 0.901 0.766

t2.8 CFreeEnS a0.859 0.856 0.887 0.870

t2.9 H3N2 Liao et al. 0.784 0.748 0.891 0.812

t2.10 MutCounts 0.843 0.841 0.851 0.845

t2.11 Peng et al. 0.720 0.658 0.950 0.777

t2.12 RegionBand 0.790 0.763 0.864 0.809

t2.13 CFreeEnS 0.885 0.896 0.882 0.889

t2.14 H5N1 Liao et al. 0.753 0.758 0.878 0.813

t2.15 MutCounts 0.863 0.859 0.915 0.885

t2.16 Peng et al. 0.846 0.857 0.908 0.880

t2.17 RegionBand 0.858 0.824 0.978 0.893

t2.18 CFreeEnS 0.915 0.903 0.965 0.932

t2.19 H9N2 Liao et al. 0.708 0.816 0.819 0.810

t2.20 MutCounts 0.775 0.823 0.914 0.859

t2.21 Peng et al. 0.633 0.888 0.601 0.702

t2.22 RegionBand 0.804 0.818 0.954 0.880

t2.23 CFreeEnS 0.850 0.860 0.964 0.908
aThe highest scores among five strategies on each dataset are colored redt2.24

Transfer learning: predicting the antigenicity of an 429

emerging unknown subtype of influenza A virus 430

To check whether the knowledge gained in one subtype 431

can be applied to the other subtype, we conducted transfer 432

learning across subtypes. To be more specific, we trained 433

a random forest using one subtype, and tested it on a dif- 434

ferent subtype of which not a single viral strain has been 435

used in the training. For example, we trained a model 436

on A/H1N1 dataset, and tested it on A/H3N2, A/H5N1, 437

A/H9N2 datasets respectively. 438

The accuracies of transfer learning using the three 439

encoding schemes (i.e., MutCounts, RegionBand and 440

CFreeEnS) are shown in Fig. 4. We can observe that F4441

CFreeEnS outperforms the other two encoding schemes 442

in every experiment. The highest prediction accuracy is 443

84.3% when the model is trained on the A/H1N1 dataset 444

and tested on the A/H5N1. The experiments of transfer 445

learning indicate that CFreeEnS can encode generic prop- 446

erties conserved across subtypes. In addition, it gives a 447

high accuracy in predicting the antigenicity of influenza 448

A/H5N1 (83.3%) even with small training dataset like 449

A/H9N2 (only 118 sequence pairs as training instances). 450

The full result of comparison is available in Additional 451

Table 3 Performance comparison among five strategies on the
combined dataset

t3.1
t3.2

t3.3Dataset Methods Accuracy Precision Recall F-score

t3.4Combined Liao et al. 0.739 0.716 0.879 0.789

t3.5MutCounts 0.698 0.675 0.944 0.781

t3.6Peng et al. 0.741 0.757 0.800 0.775

t3.7RegionBand 0.751 0.723 0.912 0.807

t3.8CFreeEnS-4 a0.846 0.837 0.900 0.867
aThe highest scores among five strategies on each dataset are colored red t3.9
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Fig. 4 Accuracy scores of transfer learning using three encoding schemes: MutCounts, RegionBand and CFreeEnS. MutCounts: features that are
used in the method proposed by Liao et al. [3]; RegionBand: features that are used in the method proposed by Peng et al. [8]. All the models use
random forest as a downstream learning method

file 1. In some experiments, RegionBand has moderately452

better performance in recall. Overall, however, CFreeEnS453

has higher F-scores. Integrating the regional band-based454

handcrafted features into the encoding scheme might fur-455

ther improve the performance of prediction. Learning456

curves provided in Additional file 2 have shown that our457

models do not suffer the over-fitting problem.458

Discussion459

The proposed CFreeEnS does not use any subtype-460

specific information, and thus can be applied to datasets461

with either one subtype or various subtypes. For a dataset462

with one subtype, one substitution matrix is enough to463

encode the dataset. All the available 94 substitution matri-464

ces are evaluated. Those with top ranking testing accuracy465

are used to encode the combined dataset with various466

subtypes.467

The inconsistency of auto-selected substitution matrix468

indicates that different properties may dominate the viral469

antigenicity in different subtypes of influenza viruses. To470

improve the prediction in diverse subtypes, all those prop-471

erties are taken into account to encode the combined472

dataset. The increases of predicting accuracy compared473

with MutCounts and RegionBand are 14.8% and 9.5%474

respectively, indicating that cross-subtype properties have475

been captured by the encoding scheme CFreeEnS. Further476

experiments on transfer learning have supported that the477

properties captured in one subtype of influenza can also478

work well in predicting the antigenicity of other subtypes479

of influenza.480

Conclusions 481

Our proposed encoding scheme CFreeEnS outperforms 482

current methods that handcraft subtype-specific features 483

when applied to predicting the antigenicity of influenza 484

viruses, especially in the combined dataset with various 485

subtypes. By systematically checking all the available sub- 486

stitution matrices, which consider different properties of 487

amino acids, we find that properties related to the struc- 488

tures of amino acids or contacts between amino acids 489

can help improve the prediction in the combined dataset. 490

To be more specific, besides fundamental properties such 491

as composition, polarity and molecular volume, informa- 492

tion about contacts of main chain atoms and amino acid 493

specific main-chain torsion angle distribution can help 494

improve the predicting accuracy. This is consistent with 495

our knowledge that different viral subtypes share major 496

protein structures. The shared properties which affect 497

the antigenicity of diverse influenza subtypes may give 498

insights into the mechanisms of virulence of the influenza 499

viruses. Another interesting finding is that the substitu- 500

tion matrices used in different subtypes are distinct. It 501

suggests that the amino acid properties dominating the 502

antigenicity of influenza viruses may vary from subtype to 503

subtype. 504

The CFreeEnS, free from dependence on carefully 505

designed features, is applicable to encoding different pro- 506

tein sequence pairs into a numeric matrix. It is promising 507

for other applications in bioinformatics measuring the 508

phenotype similarity from sequences, such as the neutral- 509

ization escape of HIV-1 virus [25]. 510
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