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STABLE SET-VALUED INTEGRATION OF NONLINEAR DYNAMIC
SYSTEMS USING AFFINE SET-PARAMETERIZATIONS∗

BORIS HOUSKA†, MARIO E. VILLANUEVA‡ , AND BENOÎT CHACHUAT§

Abstract. Many set-valued integration algorithms for parametric ordinary differential equations
(ODEs) implement a combination of Taylor series expansion with either interval arithmetic or Taylor
model arithmetic. Due to the wrapping effect, the diameter of the solution-set enclosures computed
with these algorithms typically diverges to infinity on finite integration horizons, even though the
ODE trajectories themselves may be asymptotically stable. This paper starts by describing a new
discretized set-valued integration algorithm that uses a predictor-validation approach to propagate
generic affine set-parameterizations, whose images are guaranteed to enclose the ODE solution set.
Sufficient conditions are then derived for this algorithm to be locally asymptotically stable, in the
sense that the computed enclosures are guaranteed to remain stable on infinite time horizons when
applied to a dynamic system in the neighborhood of a locally asymptotically stable periodic orbit
(or equilibrium point). The key requirement here is quadratic Hausdorff convergence of function
extensions in the chosen affine set-parameterization, which is proved to be the case, for instance, for
Taylor models with ellipsoidal remainders. These stability properties are illustrated with the case
study of a cubic oscillator system.
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1. Introduction. Enclosing the reachable set of nonlinear ordinary differential
equations (ODEs), also known as validated ODE integration or set-valued ODE inte-
gration, finds applications in many research fields, including reachability analysis for
control systems, robust optimal control, and global optimization of dynamic systems.
In the field of reachability analysis [4, 30], bounds on parametric ODEs can be used
for assessing the stability or the controllability of a given linear or nonlinear process.
This generic bounding capability is also pivotal in deterministic global optimization
of dynamic systems in order to bracket the optimal solution value and in turn provide
a certificate of global optimality [6, 15, 19, 29], as well as in robust optimal control
as a means to enforce constraint satisfaction [13, 14, 17].

Existing methods for set-valued ODE integration can be broadly classified into
either continuous or discretized approaches. In the first class, auxiliary differential
equations are formulated, whose solutions describe an enclosure of the original ODE
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solutions pointwise in time. The classical theory of differential inequalities [39] pro-
vides a means for propagating an enclosure of the reachable set in the form of an
interval vector. This approach has been later extended to propagate affine bounds
[36], a pair of convex/concave bounds [33, 34], Taylor models [7], and ellipsoidal
bounds [14]. Recently, a unified framework based on a generalized differential in-
equality has also been presented, which allows analyzing the convergence properties
of various continuous-time set-valued integration approaches [38]. Nonetheless, de-
veloping a fully validated, yet practical, integrator based on this approach presents
several challenges, mainly due to the need for applying a numerical discretization
to solve the auxiliary ODEs. Because the right-hand side function of the auxiliary
bounding ODE is typically nondifferentiable, no guarantee on the discretization er-
ror can be given in general when classical integration schemes such as Runge–Kutta
methods [10] are used. This nondifferentiability can also impair the step-size control
mechanism of the numerical integration algorithm, and as such it should be treated as
events in the framework of hybrid discrete-continuous systems; see, for instance, [35].

In contrast, discretized set-valued integration proceeds by first discretizing the
integration horizon into finite steps and it can account for discretization errors in
propagating the solution enclosures through each step. Many such validated inte-
grators go back to the original work by Moore [23], who presented a simple test for
checking the existence and uniqueness of ODE solutions over a finite time step using
interval analysis. This test was later incorporated into an algorithm that discretizes
the integration horizon into finite steps and proceeds in two phases [20, 8, 26]: (i)
determine a step-size and an a priori enclosure of the ODE solutions over the current
step then (ii) propagate a tightened enclosure until the end of that step. In particu-
lar, the second phase relies on a high-order Taylor expansion of the ODE solutions in
time, for instance, evaluated using interval arithmetic or Taylor model arithmetic with
interval remainder bounds [3, 18, 27]. The propagation of convex/concave bounds,
using either McCormick relaxations [21] or McCormick–Taylor models [5], has also
been proposed [31, 32].

Both continuous and discretized set-valued integration methods are subject to the
wrapping effect, which typically results in the diameter of the reachable set enclosure
diverging to infinity, even on finite time horizons—the so-called bound explosion phe-
nomenon. For stable ODE systems in particular, a rather natural requirement would
appear to be that the computed enclosures are themselves stable, at least for small
enough initial value or uncertain parameter sets. Nonetheless, most existing validated
ODE integrators fail to satisfy this property. Moreover, the question under which con-
ditions the resulting enclosures are stable or convergent has seldom been investigated
so far. In order to avoid confusion at this point, we note that these stability issues are
of different nature than those arising in the context of stiff ODEs, which have been
analyzed extensively for both standard (nonvalidated) integration algorithms [10] as
well as for validated integrators based on implicit integration schemes [26]. Because of
the wrapping effect, the computed enclosure of the reachable set can indeed become
unstable no matter how small the steps taken by the integrator are. Therefore, the
focus here is on explicit integration schemes, while extensions to handle stiff dynamic
systems are only mentioned briefly toward the end of the paper.

In this context, the main contribution of this paper is two-fold:
(i) We propose a novel discretized set-valued ODE integration algorithm, which

reverses the classical two-phase approach of validated ODE integration by first con-
structing a predictor of the reachable set and then determining a step-size for which
this predictor yields a valid enclosure. This reversed approach leads to a natural
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step-size control mechanism, which no longer relies on the availability of an a priori
enclosure. Moreover, we formulate the algorithm generically in terms of affine set-
parameterizations, thus encompassing the propagation of interval boxes, ellipsoids,
and Taylor models.

(ii) We analyze the stability of the reachable set enclosures obtained with the
developed algorithm. Our main contribution here is to prove that, for a certain class
of (asymptotically) stable parametric ODEs, locally stable and convergent enclosures
can be obtained on infinite time horizons when the underlying affine set arithmetic
exhibits quadratic Hausdorff convergence.

The rest of the paper is organized as follows. Both the problem formulation
and the notation used throughout the paper are specified in the following subsections.
Section 2 introduces the class of affine set-parameterizations for enclosing the range of
vector functions and discusses convergence considerations. The discretized set-valued
ODE integration algorithm is presented in section 3, and stability properties of the
computed enclosures are analyzed in section 4. These properties are illustrated with
a numerical case study in section 5. Finally, section 6 concludes the paper.

1.1. Problem statement. We consider parametric dynamic systems in the
form of nonlinear ODEs

(1.1) ∀t ∈ [0, T ], ẋ(t, p) = f(t, x(t, p), p) with x(0, p) = x0(p) .

Assumptions on the right-hand side function f : R×R
nx ×R

np → R
nx and the initial

value function x0 : Rnp → R
nx will be specified later on in the paper. The state

x : [0, T ] × P → R
nx is regarded as a function of the uncertain parameter vector

p ∈ P ⊆ R
np along the time horizon [0, T ]. The reachable set of the initial value

problem (1.1) is denoted by

X(t, P ) := {x(t, p) | p ∈ P}

or simply X(t) when it is clear from the context what the corresponding parameter
host set P is.

The focus here is on algorithms that compute a time-varying enclosure Y (t, P ) ⊇
X(t, P ) for all t ∈ [0, T ] using discretized set-valued integration techniques. Particular
emphasis is on analyzing whether, as well as determining under which conditions, one
can obtain stable enclosures Y (t, P ) on infinite time horizons for sufficiently small
(yet finite) parameter host sets P .

Originally introduced by McCormick [21] for the development of a convex/concave
relaxation arithmetic, factorable functions cover an extremely inclusive class of func-
tions which can be represented finitely on a computer by means of a code list or a
computational graph involving atom operations. These are typically unary and binary
operations within a library of atom operators, which can be based for example on the
C-code library math.h. Besides convex/concave relaxations, factorable functions find
applications in automatic differentiation (AD) [9, 25] as well as in interval analysis
[24] and Taylor model arithmetic [28].

A major complication with the solutions x(t, ·) of the parametric ODEs (1.1) is
that these functions do not have a factorable representation in general, and therefore
classical bounding techniques based on interval analysis or Taylor model arithmetic
cannot be applied directly. Nonetheless, algorithms for bounding the solution set of
parametric ODEs take advantage of the fact that the right-hand side function f and
the initial value function x0 are typically factorable.
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1.2. Notation. Besides standard mathematical notation, the diameter of a com-
pact set Z ⊆ R

n is defined as

diam (Z) := max
z,z′∈Z

‖z − z′‖

for any given norm on R
n. The Minkowski sum W ⊕ Z and the Hausdorff distance

dH(W,Z) between two compact sets W,Z ∈ R
n are given by

W ⊕ Z := {w + z | w ∈W, z ∈ Z} ,

dH(W,Z) :=max
{
max
w∈W

min
z∈Z
‖w − z‖ , max

z∈Z
min
w∈W

‖w − z‖
}
.

If W ⊆ Z in particular, we have

dH(W,Z) = max
z∈Z

min
w∈W

‖w − z‖ .

Moreover, by a small abuse of notation, we denote the Hausdorff distance between a
compact set Z ⊆ R

n and the origin by

‖Z‖H := dH(Z, {0}) = max
z∈Z
‖z‖ ,

although the function ‖ · ‖H does not define a norm in general.

2. Bounding of factorable vector-valued functions using affine set-para-
meterizations. This section introduces a framework based on affine set-parameteriza-
tions for bounding the image-set of factorable, vector-valued functions. Considerations
on Hausdorff convergence of these function extensions are discussed, and a technique
based on Taylor model arithmetic that constructs quadratically Hausdorff convergent
extensions is presented.

2.1. Affine set-parameterizations. We start by defining the class of computer-
representable sets of interest.

Definition 2.1. Let E� ⊆ R
� and Dn,� ⊆ R

n×(�+1) with � ≥ 1 and n ≥ 1. For
any Q ∈ Dn,�, we define the image of E� under the affine map ξ 
→ Q (ξT, 1)T as

ImE�
(Q) := {Q (ξT, 1)T | ξ ∈ E� } ⊂ R

n.

In this set-representation, Q is referred to as the parameterization, and the pair
(E�,Dn,�) is called an affine set-parameterization, with E� and Dn,� the basis set and
the domain set, respectively.

Usual families of convex sets such as intervals, ellipsoids, zonotopes or polytopes
can all be represented using affine set-parameterizations with convex basis sets.

Example 1. Every �-dimensional ellipsoid in R
n can be represented using an affine

set-parameterization with the basis set

E
ball
� :=

{
ξ ∈ R

�
∣∣ ‖ξ‖2 ≤ 1

}
and the associated domain set Rn×(�+1). Likewise, every polytope and every zonotope
in R

n can be represented using affine set-parameterizations with the basis sets

E
simplex
� :=

{
ξ ∈ R

�
+

∣∣ ‖ξ‖1 ≤ 1
}

and E
box
� :=

{
ξ ∈ R

�
∣∣ ‖ξ‖∞ ≤ 1

}
,
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respectively, and the same domain set Rn×(�+1). The latter basis set Ebox
� can also be

associated with the domain

D
interval
� :=

{
(diag(r), c)

∣∣ r ∈ R
�
+ , c ∈ R

�
}

in order to describe interval boxes in R
� with radius r and centered at c.

Affine set-parameterizations can also be used to describe certain classes of non-
convex sets by considering nonconvex basis sets.

Example 2. The affine set-parameterization (E
pol(q)
� ,Rn×(α

(q)
�

+1)) with

E
pol(q)
� :=

{
M�,q(ξ)

∣∣ ξ ∈ [−1, 1]� } ,

where M�,q(ξ) ∈ R
α

(q)
� is the vector containing the first α

(q)
� monomials in ξ in lexico-

graphic order,

M�,q(ξ) := ( ξ1, ξ2, . . . , ξ�, ξ
2
1 , ξ1ξ2, . . . , ξ

2
� , ξ

3
1 , . . . , ξ

q
� )

T ,(2.1)

describes nonconvex sets in R
n—we shall refer to this parameterization as the class

of qth-order polynomial models subsequently. Clearly, other bases than the monomial
basis M�,q(ξ) can be used in (2.1), such as the Legendre basis or the Chebyshev basis.
More generally, any qth-order polynomial model can be combined with a convex set,
e.g., in the manner of the remainder term in a Taylor model [28] to account for higher-
order terms. Considering interval boxes as the convex set, such a combination leads

to the parameterization (E
pol(q)
� ×E

box
n ,Rn×α

(q)
� ×D

interval
n ); with ellipsoids, likewise, it

leads to the affine set-parameterization (E
pol(q)
� × E

ball
n ,Rn×(α

(q)
� +n+1)). In the latter

construct, the first n-by-α
(q)
� block of the parameter Q ∈ R

n×(α
(q)
� +n+1) comprises

the multivariate polynomial coefficients; the following n-by-n block, the shape matrix
coefficients of the ellipsoid; and the last n-by-1 block, the center of the ellipsoid.

Of special interest for the stability analysis conducted later on in the paper is the
concept of invariance under affine transformation, as defined next.

Definition 2.2. An affine set-parameterization (E�,Dn,�) is said to be invariant
under affine transformation if for every affine map x 
→ Ax+b with (A, b) ∈ R

m×(n+1)

and every Q ∈ Dn,�,

∃Q′ ∈ Dm,� : ImE�
(Q′) = {Ax+ b | x ∈ ImE�

(Q)} = ImE�
(AQ)⊕ {b} .

Remark 1. An immediate consequence of the property of invariance under affine
transformation is that the image of E� under the composition of two affine transfor-
mations, say, given by the parameterizations Q ∈ Dn,� and P ∈ R

m×(n+1), can always
be represented exactly as the image of E� under a third affine transformation with
Q′ ∈ Dm,� such that

ImE�
(Q′) = Im ImE�

(Q) (P ) .

Among the convex and nonconvex set representations considered in Examples 1
and 2, some, but not all, are invariant under affine transformation.

Example 3. Given an ellipsoid Im
E
ball
�

(Q) with Q ∈ R
n×(�+1), the application of

any affine transformation x 
→ Ax+ b with (A, b) ∈ R
m×(n+1) yields another ellipsoid

Im
E
ball
�

(Q′) with

Q′ := AQ+ (0m×� , b) ∈ R
m×(�+1) .
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Therefore, the class of ellipsoids is invariant under affine transformation. The same
parameters Q′ can be used to show that the classes of polytopes, zonotopes, and
polynomial models—as well as any finite combination of these parameterizations—
are also invariant under affine transformation.

Example 4. The rotation of an interval box in R
n may yield another interval

box whose edges are no longer aligned with the original axes, in which case the
transformed box cannot be represented exactly in terms of the affine parameterization
(Ebox

n ,Dinterval
n ) anymore. In other words, the class of interval boxes is not invariant

under affine transformation, which is one of the main sources of the wrapping effect in
interval analysis. It also follows that any affine set-parameterizations obtained from
the combination with interval boxes, e.g., polynomial models with interval boxes as
in Example 2, will fail to be invariant under affine transformation.

2.2. Affine set-parameterization extensions of vector-valued functions.
Natural interval extensions and their variants [24] were among the first techniques
developed for bounding the range of factorable functions. The concept of interval
extension in interval analysis extends readily to affine set-parameterizations.

Definition 2.3. Consider a function ϕ : Rn → R
m, and let (E1,D1) and (E2,D2)

be two affine set-parameterizations. The function ϕE1,E2 : D1 → D2 is called an
extension of ϕ from D1 to D2 if

∀Q ∈ D1, ImE2

(
ϕE1,E2(Q)

) ⊇ ϕE1(Q) ,

where ϕE1(Q) := { ϕ(x) | x ∈ ImE1 (Q) } denotes the exact image of ϕ on ImE1 (Q).
In the special case that E1 = E2 =: E, we use the shorthand notation ϕE.

A special notation is also defined for extensions of the binary addition operation
for convenience. We shall only use this notation when it is clear from the context
what the basis and domain of the affine set-parameterization are.

Definition 2.4. Let (E,D) be an affine set-parameterization. An extension of
the binary addition is a function � : D× D→ D such that

∀Q,Q′ ∈ D, ImE (Q �Q′) ⊇ { x+ x′ | x ∈ ImE (Q) , x′ ∈ ImE (Q
′) } .

Moreover, � is said to be a regular addition extension if

∀Q,Q′ ∈ D, dH ( ImE (Q �Q′) , ImE (Q) ) = O ( ‖ImE (Q
′)‖H ) .(2.2)

Note that (2.2) only imposes a mild regularity condition, which is automatically
satisfied when using either interval arithmetic [24] or Taylor model arithmetic [1, 2, 28]
and can easily be satisfied with ellipsoidal calculus too.

A key property of the affine set-parameterization extension of a function is how
much overestimation it carries with respect to the actual image set of that function.
Especially relevant for the stability analysis conducted in this paper is the Hausdorff
convergence order.

Definition 2.5. The extension ϕE1,E2 : D1 → D2 of a function ϕ : Rn → R
m is

said to have Haussdorf convergence order q ≥ 1 if

∀Q ∈ D1, dH
(
ImE2

(
ϕE1,E2(Q)

)
, ϕE1(Q)

)
= O ( diam (ImE1 (Q))

q
) .

In the case that an affine set-parameterization is not invariant under affine trans-
formation, constructing extensions that have Hausdorff convergence order two or
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higher is not possible in general. This is even so for extensions of simple linear
functions, as illustrated below in the case of interval analysis.

Example 5. Consider the affine set-parameterization (Ebox
2 ,Dinterval

2 ) and let
Qδ := (diag(δ , δ), (0 , 0)T) ∈ D

interval
2 . Notice that Im

E
box
2

(Qδ) describes a two-
dimensional box centered at the origin and of radius δ, the diameter of which is
thus in O (δ). Now, consider the linear transformation ϕ : R2 → R

2 such that

∀x ∈ R
2, ϕ(x) :=

1√
2

(
x1 + x2

x1 − x2

)
.

The exact image of Qδ under ϕ is given by

ϕE
box
2 (Qδ) := {Ax | x ∈ [−δ, δ]× [−δ, δ]} with A =

1√
2

(
1 1
1 −1

)
,

which is a 45◦ rotation of Im
E
box
2

(Qδ) in the plane, around the origin. On the other

hand, the natural interval extension ϕE
box
2 of ϕ at Qδ gives

ϕE
box
2 (Qδ) :=

√
2 Im

E
box
2

(Qδ) ,

which is also the interval hull of ϕE
box
2 (Qδ). Nonetheless, the Hausdorff distance

between the sets ϕE
box
2 (Qδ) and ϕE

box
2 (Qδ) is such that

max
x∈ϕEbox

2 (Qδ)

min
y∈ϕEbox

2 (Qδ)

‖x− y‖∞ = (
√
2− 1) δ = O (δ) ,

that is, the natural interval extension of ϕ has Hausdorff convergence order 1.

Remark 2. The affine set-parameterization (E
pol(q)
� × E

box
n ,Rn×α

(q)
� ×D

interval
n )—

namely, the class of polynomial models combined with interval boxes—is not in-
variant under affine transformation for the same reason as in Example 5 before.
Therefore, extensions of certain functions may only have Hausdorff convergence or-
der 1 for such parameterization, regardless of the polynomial order q. This is the
case, for instance, when using Taylor model arithmetic [28] to construct an exten-

sion ϕE
pol(q)
� ×E

box
n ,E

pol(q)
� ×E

box
m from R

m×α
(q)
� ×D

interval
n to R

m×α
(q)
� ×D

interval
m of a given

factorable and (q + 1)-times continuously differentiable function ϕ : Rn → R
m. It

is worth mentioning that the foregoing observation is not in contradiction with the

convergence analysis in [5], which shows that an extension ϕE
pol(q)
�

,E
pol(q)
�

×E
box
m from

R
n×α

(q)
� to R

m×α
(q)
� ×D

interval
m of ϕ in the form of a qth-order Taylor model will have

Hausdorff convergence order q+ 1. In the present, more general, context, it is indeed
the wrapping of the interval box by the function that causes the loss of convergence
order.

The following result is given for future reference in the stability analysis.
Proposition 2.6. Let the extension ϕE1,E2 : D1 → D2 of a continuously-

differentiable function ϕ : Rn → R
m have quadratic Hausdorff convergence. Then,

dH

(
ImE2

(
ϕE1,E2(Q)

)
, ϕ(ξ) +

∂ϕ

∂x
(ξ) · [ImE1 (Q)− ξ]

)
= O

(‖ImE1 (Q)− ξ‖2H
)

(2.3)

for all Q ⊆ D1 and all ξ ∈ R
n with ‖ImE1 (Q)− ξ‖H sufficiently small.
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Proof. Without loss of generality, we assume ξ = 0, as we can always shift the sets
by a constant offset. The main idea of the proof is to exploit the triangle inequality
for the Hausdorff metric, which yields

dH

(
ImE2

(
ϕE1,E2(Q)

)
, ϕ(0) + ∂ϕ

∂x (0) · [ImE1 (Q)]
)

≤ dH
(
ImE2

(
ϕE1,E2(Q)

)
, ϕE1(Q)

)
+ dH

(
ϕE1(Q) , ϕ(0) + ∂ϕ

∂x (0) · [ImE1 (Q)]
)

.

By assumption, we have

dH
(
ImE2

(
ϕE1,E2(Q)

)
, ϕE1(Q)

)
= O

(‖ImE1 (Q) ‖2H
)
,

and, by Taylor’s theorem, we also have

dH

(
ϕE1(Q) , ϕ(0) +

∂ϕ

∂x
(0) · [ImE1 (Q)]

)
= O

(‖ImE1 (Q) ‖2H
)
.

2.3. Construction of set extensions of factorable functions. This sub-
section presents a systematic approach for constructing quadratically Hausdorff con-
vergent extensions of twice continuously differentiable factorable functions when the
underlying affine set-parameterization is invariant under affine transformation—see
Definition 2.2. For simplicity of presentation, we only discuss the construction of an
extension ϕE� : Dn,� → Dm,� of a given vector function ϕ : Rn → R

m subsequently, the
construction of more general extensions acting on different basis sets being analogous.

The construction starts with a first-order Taylor expansion of the function ϕ at
a point x∗ ∈ R

n,

ϕ(x) = ϕ(x∗) +A(x− x∗) +R(ξ1, . . . , ξm, x− x∗) ,(2.4)

where R(ξ1, . . . , ξm, x − x∗) := (r1(ξ1, x − x∗), . . . , rm(ξm, x − x∗))T and with the
shorthand notation

A :=
∂ϕ

∂x
(x∗) and ∀a, b ∈ R

n, i ∈ {1, . . . ,m}, ri(a, b) :=

[
∂ϕi

∂x
(a)−Ai

]
b .

Points ξi ∈ conv({x, x∗}), i ∈ {1, . . . ,m}, such that (2.4) holds, where conv({x, x∗})
denotes the convex hull of the points x and x∗ in R

n, are guaranteed to exist by the
mean-value theorem. Moreover, ϕ being a factorable and continuously differentiable
function, the forward mode of automatic differentiation can be applied and the resid-
ual function R is itself a factorable function. At this point, it is worth noting that
there is no unique way of choosing a suitable expansion point x∗. In the analysis that
follows, we shall assume that x∗ is contained in the original set ImE�

(Q); for instance,
the center of that set if ImE�

(Q) is an ellipsoid. Likewise, there are multiple ways
of choosing A besides the Jacobian of ϕ at x∗, including the Jacobian of ϕ at other
points or the midpoint of an interval enclosure of the Jacobian of ϕ on ImE�

(Q).
Provided that an extension RE� : Dn,� → Dm,� of the remainder function R is

available such that

{R(ξ1, . . . , ξm, x− x∗) | ξ1, . . . , ξm, x ∈ ImE�
(Q)} ⊆ ImE�

(
RE�(Q)

)
,

an extension of the function ϕ can be obtained in the form

ϕE�(Q) := (AQ + (0m×� , ϕ(x
∗)) ) �RE�(Q) .(2.5)
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The following theorem provides conditions under which such an extension has quadratic
Hausdorff convergence.

Theorem 2.7. Let the affine set-parameterization (E�,Dn,�) be invariant under
affine transformation and such that the addition extension � is regular. Assume that
the extension RE� of the residual function R in (2.4) is locally Lipschitz continuous,
so that for all Q ∈ Dn,� with sufficiently small diam(ImE�

(Q)), there exists a constant
L <∞ such that∥∥RE�(Q)

∥∥
H
≤ L ‖{R(ξ1, . . . , ξm, x− x∗) | x, ξ1, . . . , ξm ∈ ImE�

(Q)}‖H
with x∗ ∈ ImE�

(Q). Then, the extension ϕE� in (2.5) has Hausdorff convergence
order 2.

Proof. Let x∗ ∈ ImE�
(Q). By invariance of (E�,Dn,�) under affine transformation,

the set AQ + (0m×� , ϕ(x
∗)) corresponds to the exact image of the affine approxi-

mation ϕ(x∗) + A(x − x∗) of ϕ on ImE�
(Q). Moreover, ϕ being twice continuously

differentiable, we have

max
x,ξ1,...,ξm∈ImE�

(Q)
‖R(ξ1, . . . , ξm, x− x∗)‖ = O

(
‖ImE�

(Q)− x∗‖2H
)

,

and it follows from local Lipschitz-continuity of RE� that∥∥RE�(Q)
∥∥
H

= O
(
‖ImE�

(Q)− x∗‖2H
)

for any Q ∈ Dn,� with sufficiently small diam (ImE�
(Q)). The result follows by noting

that the addition extension � is regular.
Although the proof of Theorem 2.7 is quite straightforward from a mathematical

standpoint, the construct (2.5) proves especially useful to compute practical exten-
sions of factorable functions with quadratic Hausdorff convergence. The key step
involves constructing a Lipschitz-continuous range bounder of the residual function
R, yet this poses no particular problem as simple interval arithmetics can be used for
this purpose [23].

An arithmetic that meets all the requirements of Theorem 2.7, and therefore
allows constructing quadratically Hausdorff convergent extensions, is based on Taylor
models with ellipsoidal remainders as introduced in [38]. In particular, this arithmetic
is used in the numerical case study of section 5. Further implementation details are
given in Appendix B and [16].

3. Discretized set-valued integration algorithm. The focus in this section
is on parametric nonlinear ODEs of the form (1.1), in connection to which we make
the following blanket assumptions:

(A1) The right-hand side function f : R × R
nx × R

np → R
nx is jointly smooth in

(t, x, p) and factorable.

(A2) The initial-value function x0 : Rnp → R
nx is smooth in p and factorable.

(A3) The parameter set P is compact and a parameterization Qp ∈ Dnp,� is given
such that ImE�

(Qp) ⊇ P , with � ≥ 1 the actual number of degrees of freedom
in the parameterization.

We note that Assumption A1 is mainly introduced to keep notation in the paper
as simple as possible, and the algorithm presented later can be readily applied to
more general classes of parametric ODEs, whose right-hand side functions are suf-
ficiently often continuously differentiable. Likewise, Assumption A2 makes it possi-
ble to compute an enclosure of a (possibly nonconvex) initial value set of the form
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X0 := {x0(p) | p ∈ P}. In presenting the set-propagation algorithm, we keep our con-
siderations general and do not specialize to a particular affine set-parameterization.
Regarding existence and uniqueness of the ODE solutions, we note that a solution
x(·, p) : [0, T ]→ R

nx of the initial-value problem (1.1) may not exist for all p ∈ P , but
it is guaranteed to be unique on its maximum interval of existence by Assumption A1.

The objective of the following considerations is to develop a numerical algorithm
that constructs a matrix valued function Qx : [0, T ]→ Dnx,� such that

∀t ∈ [0, T ], ImE�
(Qx(t)) ⊇ X(t) .

Similar to existing validated integrators for nonlinear ODEs [26, 27, 32], the proposed
algorithm considers a Taylor series expansion in time of the ODE solutions. Assuming
that x(·, p) is the solution of (1.1) up to time t ∈ [0, T ) for a given parameter p, and
provided that this solution can be extended until t + h with h ∈ (0, T − t], the
application of Taylor’s theorem for an sth-order expansion gives

x(t+ h, p) =

s∑
i=0

hiφi(t, x(t, p), p) + hs+1φs+1(τ, x(τ, p), p)(3.1)

for some τ ∈ [t, t + h]. Here, φ0, φ1, . . . , φs+1 : [0, T ]× R
nx × R

np → R
nx denote the

Taylor coefficient functions of the solution, defined recursively as

φ0(t, x, p) := x and φi(t, x, p) :=
1

i

(
∂φi−1

∂x
(t, x, p) f(t, x, p) +

∂φi−1

∂t
(t, x, p)

)

for i = 1, . . . , s+ 1 and for all (t, x, p) ∈ [0, T ]× R
nx × R

np .
State-of-the-art validated integrators [26, 27, 32] proceed in two phases, a first

phase that determines a step-size and an a priori enclosure of the solution trajectory,
followed by a tightening of this a priori enclosure in the second phase. In contrast, the
algorithm presented below reverses the order of these two phases, thereby removing
the need for an a priori enclosure of the solution and providing a natural mecha-
nism for step-size selection. This procedure is described next for the propagation
of a generic affine set-parameterization, as introduced in section 2. It starts with a
parameterization Qx(0) := xE�

0 (Qp), with xE�
0 : Dnp,� → Dnx,� an extension of the

initial-value function x0, so that ImE�
(Qx(0)) ⊇ X(0). Then, the following two steps

are applied repeatedly:
Step 1. Given a parameterization Qx(t) at some t ∈ [0, T ) such that ImE�

(Qx(t)) ⊇
X(t), a predictor Qx(t+ h) of the solution for all h ∈ (0, T − t] is given by

Qx(t+ h) :=

s⊎
i=0

hiφE�

i (t, Qx(t), Qp) � hTOLQunit(3.2)

for a prespecified tolerance TOL > 0 and a given Qunit ∈ Dnx,� to be defined

below, and where φE�

i : [0, T ] × Dnx,� × Dnp,� → Dnx,� are extensions of the
Taylor coefficient functions φi for each i = 0, . . . , s and � stands for the
addition extension according to Definition 2.4. In order to avoid confusion
at this point, we note that the predictor Qx(t + h) does not need to be
evaluated for a particular step-size during the propagation. In a practical
implementation, Qx can be stored in the form a computational graph, with
one of the graph leaves corresponding to the (symbolic) variable h. This way,
an enclosure ImE�

(Qx(t+ h)) ⊇ X(t+ h) can always be obtained after the
propagation, by evaluating (3.2) for any step-size h satisfying the validation
condition given next.
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Step 2. A step-size h̄ is determined such that the predictor Qx(t + h) in (3.2) is
guaranteed to yield a valid enclosure of the reachable set, ImE�

(Qx(t+ h)) ⊇
X(t + h), for all h ∈ [0, h̄]. In particular, any feasible point h̄ > 0 of the
following optimization problem is suitable:

sup
h>0

h s.t.

⎧⎨
⎩
∀τ ∈ [t, t+ h],

ImE�

(
(τ − t)s φE�

s+1(t, Qx(τ), Qp)
)
⊆ TOL ImE�

(Qunit)

(3.3)

with φE�
s+1 : [0, T ]×Dnx,�×Dnp,� → Dnx,� an extension of the Taylor coefficient

function φs+1.
The validity of this bounding procedure is established in the following theorem.

Theorem 3.1. Let the function f satisfy the blanket assumption A1, and let
Qx(t) ∈ Dnx,� be such that ImE�

(Qx(t)) ⊇ X(t). If h̄ is a feasible point of the step-
size selection problem (3.3), then ImE�

(Qx(t+ h)) ⊇ X(t+ h) for all h ∈ [0, h̄], with
Qx(t+ h) given by (3.2).

Proof. It follows from the application of affine set arithmetic to the Taylor series
expansion (3.1) that ImE�

(Qx(t+ h)) ⊇ X(t+ h) whenever the remainder term (τ −
t)s+1φs+1(x(τ, p)) is contained in the set ImE�

(hTOLQunit) for all τ ∈ [t, t + h].
The semi-infinite constraint in (3.3) ensures that the remainder term satisfies this
condition on the interval [0, h̄] by construction.

For any practical purposes, it is convenient (and sufficient) to solve the step-
size selection problem (3.3) approximately. Consider the remainder function rt :
[0, T − t]→ D

interval
nx

given by

rt(h) := Bnx

(
φE�
s+1(t, Qx(t+ h), Qp)

)
,

whereBnx : Dnx,� → D
interval
nx

is a range bounder for the chosen affine set-parameteriza-
tion,

∀Q ∈ Dnx,�, ImE� (Q) ⊆ ImEbox
nx

(Bnx(Q)) ,

and let r
E
box
1 ,Ebox

nx
t : Dinterval

1 → D
interval
nx

be an interval extension of rt. The following
corollary of Theorem 3.1 is immediate upon noting that

ImE�

(
hs φE�

s+1(t, Qx(t+ h), Qp)
)
⊆ ImEbox

nx

(
r
E
box
1 ,Ebox

nx
t ( 1

2h ,
1
2h )

)

for all h ∈ [0, T − t].
Corollary 3.2. Let the function f satisfy the blanket assumption A1, let

Qx(t) ∈ Dnx,� be such that ImE�
(Qx(t)) ⊇ X(t), and let σ ∈ R

nx
+ , σ > 0, be such that

[−σ, σ] ⊆ ImE�
(Qunit). Suppose that h̄ ∈ (0, T − t] satisfies

h̄s

∥∥∥∥ diag(σ)−1 abs

(
ImEbox

nx

(
r
E
box
1 ,Ebox

nx
t ( 1

2h ,
1
2h )

))∥∥∥∥
∞
≤ TOL .(3.4)

Then, ImE�
(Qx(t+ h)) ⊇ X(t+ h) for all h ∈ [0, h̄], with Qx(t+ h) given by (3.2).

In particular, (3.4) provides a practical condition for step-size validation. The
following simple iterative procedure determines a feasible step-size:



2318 B. HOUSKA, M. E. VILLANUEVA, AND B. CHACHUAT

1. Consider the following initial guess for the step-size:

h̄ = ρ

⎛
⎜⎝ TOL∥∥∥diag(σ)−1 abs

(
ImEbox

nx

(
r
E
box
1 ,Ebox

nx
t (0)

)) ∥∥∥
∞

⎞
⎟⎠

1
s

(3.5)

with 0 < ρ < 1 a tuning parameter, e.g., ρ = 0.8 .

2. While condition (3.4) is not satisfied with h̄, reduce the step-size as h̄← ρh̄.
Note that this procedure is guaranteed to identify a feasible step-size h̄ > 0 after
finitely many iterations, since the left-hand side expression in (3.4) shrinks with order
O(hs), whereas the right-hand term is constant and has a nonempty interior.

As far as the selection of Qunit and σ is concerned, a practical procedure involves
setting σ first—e.g., by accounting for the relative magnitude of the state variables—
and determining Qunit accordingly, in such a way that ImE�

(Qunit) ⊇ [−σ, σ]. In
analogy to standard scaling heuristics used in state-of-the-art (nonvalidated) ODE
solvers [11], σ can be seen as a scaling vector and adjusted dynamically during the
integration as follows:

σi :=
1

2
Bnx(Qx(t))i,i +

ATOL

TOL
, i = 1, . . . , nx ,(3.6)

where ATOL > 0 is an additional tuning parameter, named absolute tolerance.
The full discretized set-valued integration procedure is summarized in Algorithm 1.

Note that this algorithm terminates with an error message as soon as the existence of
the reachable set X(t) can no longer be established. Such scenarios cannot be avoided,
for instance, if a solution trajectory x(·, p) fails to exist over the entire horizon [0, T ]
for certain parameters p ∈ P or if the enclosure size blows up due to wrapping effects.

Algorithm 1. Set-valued integration of a parametric initial value prob-

lem in ODEs for a generic affine set-parameterization.

Input: ODE (1.1) with factorable right-hand side f and initial value function x0; affine
parameterization Qp ∈ Dnp,� such that ImE�

(Qp) ⊇ P ; consistency order s ≥ 1; toler-
ances TOL ≥ ATOL > 0; maximum and minimum step-sizes hmax ≥ hmin > 0; step-size
reduction parameter 0 < � < 1.
Initialization:

1. Set t = 0, and Qx(t) = x
E�
0 (Qp).

Loop:

2. Adjust the scaling vector σ using (3.6).

3. Set the predictor Qx(t+ h) for all h ∈ [0, T − t] as in (3.2).

4. Set the step-size guess h := min{h̄, T − t, hmax}, with h̄ given in (3.5).
While condition (3.4) is violated, repeat h← �h.

5. If h < hmin, return with an error message.

6. Update t← t+ h

7. If t+ h = T , return with an indication of completion; else return to step 2

Output: Enclosure function Qx : [0, t] → Dnx,� such that ImE�
(Qx(τ )) ⊇ X(τ ) for all

τ ∈ [0, t], with t ≤ T .
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On the other hand, not only does Algorithm 1 yield a valid enclosure of the ODE
solution upon successful termination, but it also provides a guarantee that the solution
trajectories x(·, p) exist for all p ∈ P ⊆ ImE�

(Qp).

4. Stability analysis. Conditions under which the discretized set-valued inte-
gration algorithm presented above inherits the stability properties of the underlying
dynamic system are investigated in this section. Of particular interest are those para-
metric ODEs having a unique equilibrium point x(p) for every p ∈ P . More generally,
we shall consider the case that the function f(·, x, p) is periodic and satisfies the
following assumption.

Assumption 1. The parametric ODEs (1.1) have a unique asymptotically stable
limit cycle x(·, p) for every p ∈ P such that

∀t ∈ [0, T ], ẋ(t, p) = f(t, x(t, p), p), and x(0, p) = x(T, p)(4.1)

for some T > 0.
Implicit to condition (4.1) is the requirement that the cycle time T should be

identical for all p ∈ P , thereby restricting the class of periodic dynamic systems that
are considered here. Conditions under which T is independent of the time t, at least
locally, are further discussed in Appendix A.

Example 6. Consider the scalar differential equation

ẋ(t) = −p1x(t) + sin(p2t) + p3

with parameters p1 > 0, p2 �= 0, and p3 ∈ R. The following function

x(t, p) :=
1

p1

[(
1− p22

p1

)(
sin(p2t)− p2

p1
cos(p2t)

)
+ p3

]

satisfies condition (4.1) with the cycle time T = 2π
p2
. In particular, the cycle time T

is constant if parameter p2 is fixed. On the other hand, Assumption 1 fails to hold
when p2 is allowed to vary.

Given a compact parameter host set P ⊂ R
np , Algorithm 1 propagates a param-

eterization Qx(t, P ) ∈ Dnx,�, whose image describes a valid enclosure of the reachable
parametric initial value problem (1.1), ImE�

(Qx(t, P )) ⊇ X(t, P ), for t ≥ 0. In anal-
ogy with the definition of local asymptotic stability in dynamic systems, we formalize
the concept of local asymptotic stability for a set-valued integration algorithm next.

Definition 4.1. Let Assumption 1 be satisfied, and denote X(t, P ) := {x(t, p) |
p ∈ P} for t ≥ 0. Algorithm 1 for set-valued integration with consistency order s ≥ 1
is said to be locally asymptotically stable for the parametric ODE (1.1) if the following
conditions are satisfied for sufficiently small local tolerance TOL > 0 and maximum
step-size hmax > 0:

(i) For every ε > 0 and all t ≥ 0, there exists δ > 0 such that

dH
(
ImE�

(Qx(t, P )) , X(t, P )
)

= ε + O (TOL) + O (hs
max)(4.2)

for all P ⊆ R
np with diam(P ) < δ and all Qx(0, P ) with dH(ImE�

(Qx(0, P )) , X(0, P ))
< δ.

(ii) There exists δ > 0 such that

lim sup
t→∞

‖ ImE�
(Qx(t, {p∗}))− x(t, p∗) ‖H = O (TOL) + O (hs

max)(4.3)

for all p∗ ∈ R
np and all Qx(0, {p∗}) with ‖ ImE�

(Qx(0, {p∗}))− x(0, p∗) ‖H < δ.
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A key advantage of a locally asymptotically stable set-valued integrator (in the
sense of Definition 4.1) is that the computed reachable set enclosures are guaran-
teed to remain stable on infinite time horizons when applied to a dynamic system in
the neighborhood of a locally asymptotically stable periodic orbit (or locally asymp-
totically stable equilibrium point). Moreover, in the case that the only parametric
uncertainty is via the initial condition, the enclosure ImE�

(Qx(t, {p∗})) converges to
the periodic orbit X(t, {p∗}) for any given parameter p∗, up to a small numerical
“noise” of order O (TOL)+O (hs

max) that can be made arbitrarily small by adjusting
the tuning parameters TOL and hmax in Algorithm 1.

Remark 3. In an alternative definition of local asymptotic stability of a set-valued
integrator, the term O (hs

max) could be dropped in (4.2) and (4.3), thereby accounting
for terms of order O (TOL) only. From a practical viewpoint, this refinement would
be more appropriate for stiff dynamic systems, where a larger hmax is desirable in
order to not slow down the integration process unnecessarily. The emphasis in this
paper being on explicit integration schemes, the assumption is made that a small
hmax value compared to the characteristic timescales of the dynamics should not have
a major impact on the performance of the integration algorithm, at least for small
TOL values. We shall revisit this important aspect later on in Remark 4, once we
have developed a better understanding of the mechanisms that may lead to instability
in Algorithm 1.

Although asymptotic stability of the computed reachable set enclosures would
appear to be a natural property for any set-valued integration algorithm to have, all
currently available set-valued integrators lack it to the best of our knowledge. This
could be attributed to the fact that these integrators rely on interval arithmetics in
one way or another and are thus subject to bound explosion in finite time due to
wrapping effects, regardless of the size of the uncertainty set. Even state-of-the-art
integrators based on Taylor models with interval remainders, such as VSPODE [18],
cannot prevent bound explosion in enclosing the reachable set of asymptotically sta-
ble dynamic systems, despite the fact that they implement advanced heuristics for
rotating the basis of the interval remainder.

In order to determine conditions under which a set-valued integration algorithm
is asymptotically stable, we first recall basic stability results for periodic dynamic
systems; see, e.g., [37] for more details. Given a parametric ODE of the form (1.1)
and a limit cycle x(·, p) satisfying (4.1) for p ∈ P , the so-called monodromy matrix
Φ(T, 0, p) can be obtained as the solution of the variational differential equation for
τ, t ∈ [0, T ]:

∂Φ(t, τ, p)

∂t
=

∂f(t, x(t, p), p)

∂x
Φ(t, τ, p) with Φ(τ, τ, p) = I .(4.4)

It can be shown that the periodic orbit x(·, p) is locally asymptotically stable if all
the eigenvalues λi(G(T, 0, p)) of the monodromy matrix are in the open unit disk,

max
i∈{1,...,nx}

|λi(Φ(T, 0, p))| < 1 .(4.5)

The following theorem establishes quadratic Hausdorff convergence of the under-
lying affine set-parameterization to be the critical requirement for local asymptotic
stability of Algorithm 1.

Theorem 4.2. Let Assumption 1 hold, and consider an affine set-parameterization
for which (i) function extensions have Hausdorff convergence order 2 (or higher), and
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(ii) the addition extension is consistent in the sense of Definition 2.4. Then, Algo-
rithm 1 with consistency order s ≥ 1 is locally asymptotically stable for the parametric
ODE (1.1).

Proof. Let x(·, p) satisfy condition (4.1) in Assumption 1 for a given p ∈ P and
be a locally asymptotically stable orbit. For any t ∈ [0, T ), any Qp(P ) ∈ Dnp,� with
sufficiently small ‖ ImE�

(Qp(P ))− p ‖H, any Qx(t, P ) ∈ Dnx,� with sufficiently small
‖ ImE�

(Qx(t, P ))− x(t, p) ‖H, and any step-size h satisfying condition (3.4), we have

‖ ImE�
(Qx(t+ h, P ))− x(t+ h, p) ‖H

(3.2)
=

∥∥∥∥∥ ImE�

(
s⊎

i=0

hiφE�
i (t, Qx(t, P ), Qp(P ))⊕ hTOLQunit

)
− x(t+ h, p)

∥∥∥∥∥
H

(2.2)
=

∥∥∥∥∥ ImE�

(
s⊎

i=0

hiφE�
i (t, Qx(t, P ), Qp(P ))

)
−

s∑
i=0

hiφi(x(t, p))

∥∥∥∥∥
H

+ hO (TOL) .

Since the Taylor coefficient functions are continuously-differentiable and their exten-
sion have quadratic Hausdorff convergence, Proposition 2.6 gives

‖ ImE�
(Qx(t+ h, P ))− x(t+ h, p) ‖H

(2.3)
=

∥∥∥∥∥
s∑

i=0

hi ∂φi

∂x
(t, x(t, p), p) · [ImE�

(Qx(t, P ))− x(t, p)]

∥∥∥∥∥
H

+

∥∥∥∥∥
s∑

i=0

hi ∂φi

∂p
(t, x(t, p), p) · [ImE�

(Qp(P ))− p]

∥∥∥∥∥
H

+ hO (TOL)

+ hO
(
‖ ImE�

(Qx(t, P ))− x(t, p) ‖2H
)
+ hO

(
‖ ImE�

(Qp(P ))− p ‖2H
)
.(4.6)

Notice the absence of terms of order O(‖ ImE�
(Qx(t, P )) − x(t, p) ‖2H) or

O(‖ ImE�
(Qp(P )) − p ‖2H) in the right-hand side of the previous inequality—because

the Taylor coefficient function φ0 is affine, its extension φE�
0 matches the actual image

set of φ0 exactly, and therefore all nontrivial terms are of order O (h). Now, by using
a Taylor expansion of the solution Φ of the variational differential equation (4.4), we
have ∥∥∥∥∥

[
s∑

i=0

hi ∂φi

∂x
(t, x(t, p), p)− Φ(t+ h, t, p)

]
· [ImE�

(Qx(t, P ))− x(t, p)]

∥∥∥∥∥
H

= hO
(‖ ImE�

(Qx(t, P ))− x(t, p) ‖H
)
+O

(
hs+1

)
= hO (diam(P )) + hO (hs

max) .(4.7)

In the last inequality, we have used that ImE�
(Qx(t, P )) is locally Lipschitz continuous

in P , which follows trivially from the fact that extensions have quadratic Hausdorff
convergence in the chosen set arithmetic. Moreover, we also have

∥∥∥∥∥
s∑

i=0

hi ∂φi

∂p
(t, x(t, p), p) · [ImE�

(Qp(P ))− p]

∥∥∥∥∥
H

= hO
(‖ ImE�

(Qp(P ))− p ‖H
)
= hO (diam(P )) .(4.8)
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Thus, combining (4.6), (4.7), and (4.8) gives

‖ ImE�
(Qx(t+ h, P ))− x(t+ h, p) ‖H

= ‖Φ(t+ h, t, p) · [ImE�
(Qx(t, P ))− x(t, p)] ‖H

+ hO
(
‖ ImE�

(Qx(t, P ))− x(t, p) ‖2H
)
+ hO

(
‖ ImE�

(Qp(P ))− p ‖2H
)

+ hO (diam(P )) + hO (TOL) + hO (hs
max)

for all t ∈ [0, T ].
In a second step, we apply a discrete version of Gronwall’s lemma to obtain

‖ ImE�
(Qx(t+ T, P ))− x(t, p) ‖H

= ‖Φ(t+ T, t, p) · [ImE�
(Qx(t, P ))− x(t, p)] ‖H

+O
(
‖ ImE�

(Qx(t, P ))− x(t, p) ‖2H
)
+O

(
‖ ImE�

(Qp(P ))− p ‖2H
)

+O (diam(P )) +O (TOL) +O (hs
max) ,

since we can substitute x(t+ T, p) = x(t, p).
In the last step, we use induction over the number N of cycle times together with

the fact that limN→∞ Φ(t+ T, t, p)N = 0 for an asymptotically stable orbit in order
to show that the above inequality implies

∀t ∈ [0, T ], lim
N→∞

dH
(
ImE�

(Qx(t+NT,P )) , X(t+NT,P )
)

= O (diam (P )) +O (TOL) +O
(
hs+1
max

)
.(4.9)

In particular, (4.9) implies both conditions (i) and (ii) in Definition 4.1.
Theorem 4.2 sheds light on the most fundamental reason why existing set-valued

integrators based on Taylor models (with interval remainders) fail to stabilize the
computed reachable set enclosures for small enough uncertainty set, as these affine
set-parameterizations have Hausdorff convergence order 1 in general (see Remark 2).

We also note that a set-valued integration algorithm may not inherit the stability
properties of those dynamic systems that are locally stable, but not locally asymp-
totically stable. When invariants are known explicitly for such systems though, e.g.,
based on the underlying conservation laws in the case of physical systems, these in-
variants can sometimes be used to formulate an equivalent, reduced dynamic system
that is locally asymptotically stable.

Finally, it is worth noting that the foregoing stability analysis can be extended
to the case that the initial set X0 = {x0(p) | p ∈ P} is not necessarily close to the
periodic orbit. More specifically, if for each p ∈ P the response trajectory x(·, p)
reaches an attractive neighborhood of the periodic limit orbit X(t, P ) after a finite
transition time, then Algorithm 1 shall remain stable on infinite horizons as long as
the diameter of the parameter host set P is sufficiently small.

Remark 4. As a final note in connection to Remark 3, it is interesting to observe
that the term O (hs

max) is introduced in (4.8). The reason that the discretization
error of the variational equation cannot be bounded with a term of order O (TOL)
is because the step-size control mechanism in Algorithm 1, although it accounts for
discretization errors in the nominal state trajectories rigorously, does not account
for discretization errors in the associated variational equation on the other hand. In
particular, this problem could be resolved by appending the following semi-infinite
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constraint to the step-size optimization problem (3.3):

∀τ ∈ [t, t+ h], ImE�

(
(τ − t)s

∂φs+1

∂x

E�

(Qx(τ))

)
⊆ TOL ImE�

(Q′
unit)

for a suitable matrix Q′
unit ∈ Dnx×nx,�. However, drawbacks of this approach in-

clude the need to compute enclosures of the Jacobian matrix of φs+1, which can be
computationally demanding in practice, as well as the extra conservatism it would
introduce on the selected step-size. A potentially more efficient way of enforcing sta-
bility irrespective of the step-size control mechanism would involve developing implicit
schemes for set-valued numerical ODE integration, which will be the topic for further
research.

5. Case study: Cubic oscillator. The main objective of the numerical case
study in this final section is merely to illustrate the ability of the developed set-
valued ODE integrator to stabilize the reachable set enclosures—not to provide a
detailed computational study. Our implementation of Algorithm 1 comes in the
form of a C++ class called ODEBND VAL as part of the CRONOS library, which is
made freely available at http://omega-icl.bitbucket.org/cronos/. It uses the affine

set-parameterization (E
pol(q)
� ×Eball

nx
,Rnx×(α

(q)
� +nx+1)) of polynomial models combined

with ellipsoids and computes quadratically Hausdorff convergent extensions based
on Theorem 2.7; see Appendix B and [16] for more details on the construction of
Taylor models with ellipsoidal remainder. In particular, we use the verified library
PROFIL (http://www.ti3.tu-harburg.de/) for interval analysis and the library MC++
(http://omega-icl.bitbucket.org/mcpp/) [22] for Taylor model arithmetic. The Taylor
expansion in time of the ODE solutions are constructed using automatic differentia-
tion in FADBAD++ (http://www.fadbad.com/fadbad.html). Unless otherwise noted,
the consistency order is set to s = 5, the tolerances to TOL = 10−7 and ATOL = 10−8,
and the step-size control parameter to ρ = 0.8.

We consider the following cubic oscillator system:

ẋ1(t) = x2(t) +
1

10
(1− x1(t)

2 − x2(t)
2)x1(t) with x1(0) = p1 ,(5.1)

ẋ2(t) = −x1(t) +
1

10
(1− x1(t)

2 − x2(t)
2)x2(t)− 1

5
x2(t) with x2(0) = p2 ,(5.2)

where both parameters p1 and p2 are uncertain, given by p ∈ P := [1.5, 3]×[−0.1, 0.1]⊆
R

2.
The results obtained by running the set-valued integrator with fourth-order Taylor

models are given in Figure 1, with projections on the state components x1(t) and x2(t)
shown on the left plot and the right plot, respectively. Both plots illustrate that the
computed set Im

E
pol(4)
� ×E

ball
2

(Qx(·, P )) validly enclose the actual reachable set on the

time horizon [0, 20], with very small overestimation in this case.
The behavior of the set-valued integrator on the extended time horizon t ∈ [0, 400]

is shown in Figure 2. Also reported on this figure are the bounds computed using
VSPODE (v1.4) [18], with the order of the Taylor expansion in time and of the Taylor
model set to 5 and 4, respectively, in order to enable direct comparison, and selecting
QR-factorization with row permutation as the wrapping mitigation strategy. These
results demonstrate the ability of Algorithm 1 to stabilize the reachable set enclosures

http://omega-icl.bitbucket.org/cronos/
http://www.ti3.tu-harburg.de/
http://omega-icl.bitbucket.org/mcpp/
http://www.fadbad.com/fadbad.html
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Fig. 1. Projections of the exact reachable set X(t) (shaded area) on the state component x1(t)

(left plot) and the state component x2(t) (right plot). The solid lines show the upper and lower
bounds computed with Algorithm 1 over the time horizon [0, 20].
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Fig. 2. Projections on the state component x1(t) (left plot) and the state component x2(t)
(right plot) of the upper and lower bounds computed with Algorithm 1 (red lines) and VSPODE
(blue lines) over the extended time horizon [0, 400].

when propagating Taylor models with ellipsoidal remainders. In contrast, the bounds
computed using VSPODE eventually explode around t = 180, a behavior attributed
to the propagation of Taylor models with interval remainder, which only enjoy linear
Hausdorff convergence in the sense of Definition 2.5 (see also Remark 2).

Closely related to stability is the question of how closely the computed enclo-
sure Im

E
pol(4)
� ×E

ball
2

(Qx(·, P )) approximates the actual reachable set X(t, P ). This

approximation error can be quantified as the diameter of the ellipsoidal remain-
der Im

E
ball
2

(Qrem
x (·, P )) with Qrem

x (t, P ) ∈ R
2×3 such that [Qpol

x (t, P ), Qrem
x (t, P )] :=

Qx(t, P ). The left plot on Figure 3 represents the evolution of such a diameter along
the time horizon for various Taylor model expansion orders q = 2, . . . , 5. In the case
of q = 2, Algorithm 1 stops with an error message around t = 35, after a dramatic
increase in the diameter of the ellipsoidal remainder. This is due to the fact that, in
this instance, the inherent stability of the cubic oscillator system (5.1) is over-powered
by the wrapping effect inherent to the ellipsoidal remainder term of the Taylor model
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Fig. 3. Diameter of the remainder ellipsoid in the parameterization of the reachable set enclo-
sure diam(Im

Eball
2

(Qrem
x )) computed with the set-valued integrator for various Taylor model orders

q = 2, . . . , 5 (left plot) and various tolerances TOL = 10−4, . . . , 10−7 (right plot).

(for the given uncertainty set P ). In contrast, the reachable set enclosures can be
stabilized with higher-order expansions q ≥ 3; that is, Algorithm 1 can in principle
propagate these enclosures ad infinitum. It is also seen that the approximation error
can be reduced by increasing the expansion order q of the Taylor model. While this
trend could be confirmed for other examples as well, the question whether or not the
approximation error converges to zero in the limit remains open.

Finally, the right plot on Figure 3 represents the evolution of the diameter of
the ellipsoidal remainder for various tolerance values TOL = 10−4, . . . , 10−7 in the
case of fourth-order Taylor models (q = 4). These results illustrate the effect of the
parameter TOL on the integrator stability. In agreement with the asymptotic stability
conditions in Definition 4.1, too large a value for TOL can indeed lead to instability
of the computed enclosures and bound explosion in finite time.

6. Conclusions. This paper has presented a new discretized set-valued integra-
tion algorithm for parametric initial value problems in ODEs. This algorithm uses a
predictor-validation approach to propagate generic affine set-parameterizations, whose
images are guaranteed to enclose the ODE reachable tube by Theorem 3.1. We have
also derived sufficient conditions in Theorem 4.2 for this algorithm to be locally asymp-
totically stable, in the sense that the computed reachable set enclosures are guaranteed
to remain stable on infinite time horizons when applied to a dynamic system in the
neighborhood of a locally asymptotically stable periodic orbit (or equilibrium point).
Such stability hinges on the ability to compute quadratically Hausdorff convergent
extensions in the chosen affine set-parameterization. In particular, we have described
a generic way of constructing such extensions when that affine set-parameterization
is invariant under affine transformation. These stability properties are illustrated for
simple dynamic systems using an in-house library named CRONOS based on the li-
brary MC++, both freely available from http://omega-icl.bitbucket.org/. Another
open-source implementation is available as a subpackage in the ACADO Toolkit [12]
at http://www.acadotoolkit.org. It is worth mentioning that a similar stability anal-
ysis can be conducted for continuous-time set-valued integrators, such as the ones
described in [38]. In future work, implicit integration schemes will also be considered
in order to improve the integrator stability, especially for stiff dynamic systems.

http://omega-icl.bitbucket.org/
http://www.acadotoolkit.org
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Appendix A. On invariance of the cycle time T . In connection to Assump-
tion 1, the following result establishes that the cycle time T is independent of t under
mild conditions.

Proposition A.1. Suppose that the right-hand side function f is continuously
differentiable and can be rewritten in the form f(t, x, p) = f̂(ξ(t), x, p), where the
function ξ is periodic with ξ(t + T ) = ξ(t) for all t. Suppose further that there exists
a parameter p∗ such that the associated limit cycle x(t, p∗), defined implicitly by

x(t, p∗) := x(t, x0(p
∗), p∗) with x0 such that x0(p

∗) = x(T, x0(p
∗), p∗)

satisfies condition (4.5), that is, is locally asymptotically stable. Then, there exists an
open neighborhood P ⊆ R

np with p∗ ∈ P and a cycle time T > 0 such that the limit
cycles x(t, p) satisfy (4.1) for all p ∈ P . In other words, the cycle time T of the limit
cycles is locally independent of p.

Proof. The proof follows directly by applying the implicit function theorem to
the nonlinear equation

0 = x0(p
∗)− x(T, x0(p

∗), p∗) ,

since the associated Jacobian matrix I − G(T, 0, p∗) is indeed invertible from the
asymptotic stability condition (4.5).

Remark 5. Consider Example 6. If parameter p2 is fixed, then the assumptions
in Proposition A.1 are satisfied upon choosing ξ(t) = sin(p2t). But if p2 is allowed to
vary, then the function ξ depends on an unknown parameter, which is not allowed in
Proposition A.1.

Appendix B. Ellipsoidal set arithmetics. The numerical computations in
section 5 hinge on ellipsoidal set-parameterizations of the form (Eball

� ,Rn×(�+1)), with
� = n in order to represent ellipsoids with nonzero volume in R

n—see Example 1.
Given any two set-parameterizations (R1, r1), (R2, r2) ∈ R

n×(n+1), a regular addition
extension � is given by

(R1, r1) � (R2, r2) :=

([
1

λ1
RT

1 R1 +
1

λ2
RT

2 R2

]1/2

, r1 + r2

)
,(B.1)

where [·]1/2 denotes any (e.g., the symmetric) matrix square-root, and

λ1 = 1− λ2 =

√
tr
(
RT

1 R1

)
+ ε√

tr
(
RT

1 R1

)
+ ε +

√
tr
(
RT

2 R2

)
+ ε

,

with ε > 0 a small numerical regularization to prevent division by zero in degenerate
cases; see, e.g., [14, 17] for a proof.

More specifically, the set-valued integration results in section 5 involve propa-

gating affine set-parameterizations of the form (E
pol(q)
� × E

ball
n ,Rn×(α

(q)
� +n+1))—see

Example 2, namely, Taylor models with ellipsoidal remainders. Given the regular ad-
dition extension (B.1) above, and since the sum of two qth-order polynomials is itself
a qth-order polynomial, defining a regular addition extension � for such parameteriza-
tions is straightforward. In turn, quadratical Hausdorff convergence of the extension
(2.5) follows from Theorem 2.7.
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