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Abstract—Federated learning (FL) is recognized as a key en-
abling technology to support distributed artificial intelligence (AI)
services in future 6G. By supporting decentralized data training
and collaborative model training among devices, FL inherently
tames privacy leakage and reduces transmission costs. Whereas,
the performance of the wireless FL is typically restricted by the
communication latency. Multiple-input multiple-output (MIMO)
technique is one promising solution to build up a communication-
efficient edge FL system with limited radio resources. In this
paper, we propose a novel joint device scheduling and receive
beamforming design approach to reduce the FL convergence
gap over shared wireless MIMO networks. Specifically, we
theoretically establish the convergence analysis of the FL process,
and then apply the proposed device scheduling policy to maximize
the number of weighted devices under the FL system latency and
sum power constraints. Numerical results verify the theoretical
analysis of the FL convergence and exhibit the appealing learning
performance of the proposed approach.

I. INTRODUCTION

With the large-scale deployment of 5G around the world,
6G has attracted increasing attention form both industry and
academia, which is envisioned as an unprecedented evolution
from “connected things” to “connected intelligence”, thereby
forming the backbone of a hyper-connected cyber-physical
world with the integration of humans, things and intelli-
gence [1]–[4]. Recently, various artificial intelligence (AI)
applications for 6G have emerged and penetrated in almost
all verticals such as sustainable cities [5], industrial Internet
of Things (IoT) [6], e-health services [7], etc. Traditional
centralized machine learning (ML) frameworks, which require
a cloud center to store and process the raw data collected
from devices, are becoming impractical for enormous privacy-
sensitive data and low-latency communication requirements
[8]. All the aforementioned reasons stimulate the development
of federated learning (FL), where devices with limited hard-
ware resources respectively train their local models with their
raw datasets, and only the local models are transmitted from
devices to the edge server for global model aggregation [9].

The deployment of FL over real wireless networks still
faces significant challenges, among which the communication
latency is becoming the major bottleneck with the rapid
advances in computational capability. Considerable researches
have been devoted to address this issue for both analog and
digital FL systems. In analog FL systems, over-the-air com-
putation (AirComp) technology is broadly leveraged to imple-

ment the efficient concurrent transmission of locally computed
updates by exploiting the superposition property of wireless
multiple access channels (MAC) [10]–[12]. For multiple-input
single-output (MISO) AirComp, to better trade off the learning
performance and the communication efficiency, [10] proposed
a joint device scheduling and receive beamforming design
approach to maximize scheduled devices, and [11] proposed
a broadband analog aggregation scheme which enables linear
growth of the latency-reduction ratio with the device popu-
lation. Furthermore, a distributed stochastic gradient descent
algorithm was implemented for a bandwidth-limited fading
MAC [12]. However, the model aggregation performance of
MISO AirComp is severely limited by the unfavorable wireless
propagation channel. To build up a communication-efficient
edge FL system, multiple-input multiple-output (MIMO) tech-
nique has been widely recognized as a promising way to
support high-reliability for massive device connectivity as well
as high-accuracy and low-latency for model aggregation via
exploiting spatial degree of freedom [13]–[15].

Another line of works concentrates on the digital FL to
circumvent the strict synchronization requirement at the sym-
bol level and inherent corruption from channel noise during
model aggregation stage in the analog FL system [16]–[19].
[16] investigated the trade-off between the convergence time
and device energy consumption via Pareto efficiency model.
[17] developed a probabilistic device scheduling scheme and
first used artificial neural networks for the prediction of model
parameters to minimize the convergence time. [18] optimized
the convergence rate with a given time budget via a joint
device scheduling and resource allocation. In [19], a theoretical
analysis of the distributions of the per-round delay and overall
delay were characterized, respectively. However, prior works
on digital FL only are limited to the situation where each
device transmits its local updates to the single-antenna edge
server with orthogonal multiplexing approaches, e.g., time-
division multiple access (TDMA) [16] and frequency-division
multiple access (FDMA) [17]–[19]. In contract, multiple-
antenna technique has shown its apparent performance gain in
terms of convergence time [20]. To the best of our knowledge,
there is still a lack of investigation on the digital FL systems
over shared wireless MIMO networks.

In this paper, we consider a delay-aware digital FL system,
where the edge server equipped with multiple antennas orches-
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trates the learning process via exchanging model parameters
with single-antenna devices in shared wireless channels. At
first, we theoretically establish the convergence analysis of the
FL process after fixed rounds based on reasonable assump-
tions, which shows that as the weighted sum of scheduled
devices of each round increases, the convergence optimality
gap will be decreased. In order to minimize the convergence
optimality gap, we design a novel device scheduling policy to
allow as many weighted devices as possible to participate in
the training process. Concretely speaking, we optimize receive
beamforming design to obtain a device priority, and then
iteratively add a device to the scheduling set based on the
device priority when corresponding constraints of the wireless
FL system satisfied. Numerical experiments are conducted to
validate the theoretical analysis and demonstrate the superior
performance of the proposed scheduling policy.

II. SYSTEM MODEL

A. Federated Learning Model
We consider the canonical FL system consisting of one edge

server and K devices indexed by K = {1, . . . ,K}, which
aims to collaboratively learn a common model [9]. Each device
k ∈ K has its own local dataset, of which the raw data are
unavailable to other devices and the edge server. To facilitate
the learning, the goal of the FL process is usually expressed
as the following optimization problem:

minimize
w∈Rd

F (w) :=
∑
k∈K

αkEξ∼Dk
[f(w; ξ)], (1)

where w ∈ Rd represents the global model parameters, data
sample ξ obeys a certain probability distribution Dk, and the
global loss function F (·) is the weighted sum of the local loss
functions f(·; ξ), where the weight factor αk > 0 satisfies∑
k∈K αk = 1. Basically, αk can be set as nk/

∑
k∈K nk,

where nk is the number of data samples at device k [21].
The canonical FL runs in synchronized rounds of computa-

tion and communication process between the edge server and
devices, consisting of three stages:

1) Global Model Dissemination: The edge server first de-
cides which devices to participate in the current round,
and the set of scheduled devices at the round t is denoted
as St. Then, the edge server broadcasts the global model
parameters to all scheduled devices. In this paper, the
scheduling policy is based on whether the devices satisfy
the system latency constraints, which will be presented
in Section IV. If there is no device scheduled at the
current round, edge server will postpone this round until
St 6= ∅.

2) Local Model Computation: After each scheduled device
k ∈ St receives the current global model parameters, it
performs local computation according to its own dataset
to update the local model parameters wk,t [9]. For
simplification, we consider that each scheduled device
updates its local model parameters via one-step gradient
descent method [13], [18], i.e.,

wk,t = wt−1 − ηt
∑nk

i=1∇f(wt−1; ξk,i)
nk

, (2)

Step 3: Model Aggregation 
& Update

⋯ Step 2: Local Model 
Computation

Edge Server

Scheduled Devices

Device 2

⋯

Device 1 Device 𝑘𝑘

Step 1: Global Model 
Dissemination

Fig. 1. The canonical FL system consisting of one edge server and devices.

where wt−1 is the received global model parameters,
ηt is the learning rate, and wk,t is the generated local
model parameters of device k.

3) Model Aggregation & Update: All scheduled devices
upload their local models. Then the edge server uses a
weighted sum method to aggregate these local models
so as to generate new global model parameters, i.e.,

wt =

∑
k∈St αkwk,t∑
k∈St αk

, (3)

where wt is the updated global model parameters.

These three stages are repeated until the whole FL system
attains a sufficiently trained model, as shown in Fig. 1.

B. Transmission Model

We study the information exchange process between the
edge server and devices over shared wireless MIMO networks,
where the edge server equipped with N antennas orchestrates
all single-antenna devices. The model parameters are encoded
into digital signals to achieve reliable error-free transmission
[12], such as polar code. Additionally, we consider the block
flat fading channel and assume that one FL round could be
completed within a communication block. The assumption
is practically well justified when on-device FL models are
typically light-weight under a few tens of thousands of param-
eters, whose time consumption is in the same order of channel
coherent block [22]. Therefore, it is reasonable to finish one
round of FL training process within one communication block.

We first consider the uplink process, that all scheduled
devices are concurrently transmitting their data streams. The
received signal at the edge server can be expressed as

yt =
∑
k∈St

hk,t
√
pk,txk,t + nt, (4)

where xk,t is the transmitted signal symbol of device k, pk,t
is the transmit power of device k, hk,t ∈ CN is the wireless
channel coefficient between the edge server and device k,
and nt ∼ CN (0, σ2I) is the additive white Gaussian noise
(AWGN) at the edge server, where σ2 is noise power. Herein,
xk,t is normalized with E{|xk,t|2} = 1, and the noise power
satisfies σ2 = BN0, where B is the uplink bandwidth and N0

is the noise power spectral density.



Due to the existence of interference and noise, the uplink
process is the primary bottleneck of one computation and com-
munication round. To improve the communication efficiency
of the FL system, the linear receive beamforming technique
is deployed at the edge server to decode k-th device’s data
stream, which is denoted as mk,t ∈ CN . Without loss of
generality, we normalize the receive beamforming vector as
‖mk,t‖22 = 1. Then, we have the signal-to-interference-plus-
noise ratio (SINR) for the k-th device’s data stream

SINRul
k,t(mk,t,pt) =

pk,t

∣∣∣mH
k,thk,t

∣∣∣2∑
i∈St/{k} pi,t

∣∣∣mH
k,thi,t

∣∣∣2 + σ2

, (5)

where pt = [p1,t, p2,t, . . . , pK,t]
T is the collection of transmit

power of all devices. Note that SINRul
k,t represents the possibly

minimal SINR of device k during the whole uplink transmis-
sion interval at round t.

C. Latency Model

Based on the three stages of the FL process in Section II-A,
the computation and communication latency can be mainly
classified into three categories [18], i.e.,

1) Downlink Broadcast Latency: In view of the fact that the
edge server has relatively less stringent power constraint
than devices and could occupy the whole downlink
bandwidth to broadcast the global model, the downlink
broadcast latency is negligible.

2) Local Computation Latency: Since each scheduled de-
vice executes one-step update via gradient descent
method based on its local dataset, the local computation
latency of device k is given by

T loc
k,t =

nkR

f capk

, (6)

where nk is the size of local dataset at device k, R
is the number of processing unit (e.g., CPU or GPU)
cycles for calculating one data sample, and f capk is the
computational capacity of device k, which is quantified
by the frequency of the processing unit.

3) Uplink Transmission Latency: Combining the possible
minimal SINR expression in (5), the uplink transmission
rate of device k can be expressed as

rulk,t = B log2

(
1 + SINRul

k,t

)
. (7)

Using I-bit number to represent model parameter, the
uplink transmission latency of device k is given by

T ul
k,t =

Id

rulk,t
=

Id

B log2

(
1 + SINRul

k,t

) , (8)

where d is the dimension of model parameters. Herein,
instead of adaptive rate transmission strategy, we employ
the fixed rate transmission strategy for simplification,
and choose the channel capacity of the worst case
log2

(
1 + SINRul

k,t

)
as the fixed transmission rate.

On account of the synchronization requirement of the FL
system and the limited length of wireless channel coherent

block in practice, we expect to constrain the total latency of
the t-th round, which is determined by the slowest device [18]

T sys
t (St, {mk,t},pt) = max

k∈St
(T loc
k,t + T ul

k,t). (9)

This indicates that each device could start its local computation
as long as it receives the global model parameters, and then
uploads its local model parameters as long as it accomplishes
its local computation.

III. CONVERGENCE ANALYSIS AND PROBLEM
FORMULATION

A. Convergence Analysis

We establish the convergence analysis of the FL process
based on the following assumptions, which have been made
in the works [13], [23].

Assumption 1. (L-smoothness): The differentiable function
F (w) is smooth with a positive constant L, i.e., for all v and
w, we have

F (v) ≤ F (w) + (v −w)T∇F (w) +
L

2
‖v −w‖22. (10)

Assumption 2. (Bounded local gradients): The local gradients
at all devices are uniformly bounded, i.e., there exist constants
κ ≥ 0 such that for all w and ξ,

‖∇f(w; ξ)‖22 ≤ κ. (11)

Theorem 1. Suppose that Assumption 1 and 2 hold, then
given the collection of scheduling results {St} and setting the
learning rate to be 0 < ηt ≡ ς ≤ 1

L , the average norm of
global gradients after τ rounds is upper bounded by

1

τ

τ−1∑
t=0

‖∇F (wt−1)‖22 ≤
2 (F (w0)− F (w∗))

ςτ

+
4κ

τ

τ−1∑
t=0

(
1−

∑
k∈St

αk

)2

︸ ︷︷ ︸
g({St})

,
(12)

where w∗ is the globally optimal solution for (1).

Proof. Please refer to Appendix A.

B. Problem Formulation

Based on Theorem 1, the convergence optimality gap is
dominated by the second term g({St}). We now formulate
the system optimization problem to minimize the convergence
gap g({St}) under system latency constraint T thr and sum
power constraint Psum, which is written as

minimize
{St},{mk,t},{pt}

g ({St})

subject to T sys
t (St, {mk,t},pt) ≤ T thr,∀t,
‖mk,t‖22 = 1, pk,t ≥ 0,∀k ∈ St,∀t,∑
k∈St

pk,t ≤ Psum,∀t,

(13)

where {St}, {mk,t} and {pt} represent the collection of
scheduling results, receive beamforming vectors and devices’
transmit power during the total τ rounds, respectively. Note



Algorithm 1: Device scheduling of one FL round

Input: Channel coefficient hk, noise power σ2, SINR
requirement γthrk , device power constraint Psum.

1 Solve problem (21), and sort s in ascending order.
2 Initialize the device scheduling set S = Stmp = ∅.
3 while S 6= K do
4 Add a new device to Stmp with the lowest sk.
5 Test if the SINR and sum power constraints are

feasible for Stmp via Algorithm 2.
6 If False, terminate the loop.
7 S = Stmp

8 end
9 return S and corresponding p and {mk}

that the edge server must wait for the local models of all sched-
uled devices before updating the global model, so the system
latency constraint T thr plays a key role in the FL performance
[24]. Since constraints of problem (13) are independent of
round t and g({St}) is a decreasing function with respect to∑
k∈St αk, we could decouple problem (13) into τ one-round

sub-problem, and we solve the following one-round system
optimization problem

maximize
S,{mk},p

∑
k∈S

αk

subject to T sys(S, {mk},p) ≤ T thr,

‖mk‖22 = 1, pk ≥ 0,∀k ∈ S,∑
k∈S

pk ≤ Psum,

(14)

where the subscript t is omitted for brevity. By substituting
(9) into problem (14), we obtain

maximize
S,{mk},p

∑
k∈S

αk

subject to SINRul
k ≥ γthrk ,∀k ∈ S,

‖mk‖22 = 1, pk ≥ 0,∀k ∈ S,∑
k∈S

pk ≤ Psum,

(15)

where

γthrk = 2rk − 1 and rk =
Id

B(T thr − T loc
k )

.

Problem (15) is challenging to solve due to the combinatorial
optimization variable S, the sparse objective function and the
non-convex SINR constraints. To tackle this issue, we shall
exploit the uplink–downlink duality of MIMO systems in the
next section.

IV. SYSTEM OPTIMIZATION

In this section, we utilize the equivalence between the uplink
and downlink device scheduling problems [25], where the
uplink SINR constraints for all devices and the sum power
constraint is converted into a dual downlink constraints, as
presented in the following lemma.

Algorithm 2: Feasibility test in the uplink transmission

1 Initialize:Arbitrary p(0) such that
∑
k∈S p

(0)
k = Psum.

2 repeat
3 In the l-the iteration, update p(l−1) according to

p̃k =
γthrk

hH
kΣ−1k hk

,∀k ∈ S, (16)

where
Σk =

∑
i∈S,i6=k

p
(l−1)
i hih

H
i + σ2I. (17)

Normalize p̃k according to p(l)k = Psum∑
k∈S p̃k

p̃k.
4 until p convergence;
5 return Boolean value of

∑
k∈S pk ≤ Psum

Lemma 1. A scheduling set S can satisfy SINR requirements
{γthrk } and sum power constraint Psum of (15) in the uplink
transmission if and only if there exist dual transmit beamform-
ing vectors m̂k ∈ CN such that

SINRdl
k ≥ γthrk ,∀k ∈ S∑

k∈S

‖m̂k‖22 ≤
Psum

σ2

, (18)

where dual downlink SINR for the k-th device is defined as

SINRdl
k =

∣∣m̂H
khk

∣∣2∑
i∈S/{k}

∣∣m̂H
i hk

∣∣2 + 1
. (19)

Therefore, the uplink device scheduling problem (15) can
be equivalently reformulated as the dual downlink problem

maximize
S,{m̂k}

∑
k∈S

αk

subject to
Re(m̂H

khk)√
γthrk

≥
√ ∑
i∈S/{k}

∣∣m̂H
i hk

∣∣2 + 1,

Im(m̂H
khk) = 0,∀k ∈ S,∑

k∈S

‖m̂k‖22 ≤
Psum

σ2
,

(20)

where the downlink SINR constraints are equivalently rewrit-
ten as the second order cone constraints, since the phase of
m̂k will not change the objective function and constraints [26].
However, problem (20) is still difficult to solve because of the
combinatorial optimization variable S and the non-convex and
non-smooth objective function. By introducing the auxiliary
variable s and applying reweighted `1 minimization technique,
we relax problem (20) to

minimize
s,{m̂k}

∑
k∈K

αksk

subject to
Re(m̂H

khk)√
γthrk

+sk ≥
√ ∑
i∈K/{k}

∣∣m̂H
i hk

∣∣2+1,

Im(m̂H
khk) = 0,∀k ∈ K,∑

k∈K

‖m̂k‖22 ≤
Psum

σ2
, s ≥ 0.

(21)
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Fig. 2. The convergence results of the FL system over shared wireless MIMO networks under different device scheduling policies.

The proposed device scheduling policy is summarized in
Algorithm 1. More specifically, we first solve problem (21) to
get the device priority s, and then iteratively add one device to
the scheduling set S based on the device priority s if feasibility
test in Algorithm 2 could be passed [27]. Finally, we obtain
the optimization solutions about the scheduling set S and the
power allocation p. The optimal receive beamforming vectors
{mk} that maximize the uplink SINR are the corresponding
minimum-mean-square-error (MMSE) filters [28], which are
obtained in closed form as

mk =

(
σ2I +

∑
i∈S pihih

H
i

)−1
hk∥∥∥(σ2I +

∑
i∈S pihih

H
i

)−1
hk

∥∥∥2
2

,∀k ∈ S. (22)

V. SIMULATION RESULTS

In this section, we evaluate the convergence gap of the
FL system under the different device scheduling policies by
numerical experiments. We consider the image classification
task on the CIFAR-10 test dataset, which consists of 10000
32 × 32 RGB color images with 10 classes. We adopt the
Multinomial Logistic Regression model (d = 32× 32× 3× 10
parameters) to classify the target dataset with the learning rate
ηt = 5×10−3 for all fixed τ = 5000 rounds. Each parameter is
stored with I = 32 bits to guarantee the numerical precision,
and each data sample can be handled within R

fcap
k

= 10−4s
for all devices. We consider a FL system consisting of one
edge server equipped with N = 4 antennas and 50 single-
antenna devices, and the devices are uniformly located in a
region enclosed between the inner radius of 50 meters and
outer radius of 250 meters. We assign the non-iid dataset to
each device. In particular, we sort the image data samples
according to their class, and divide them into 50 disjoint sub-
datasets with different sample sizes. The channel coefficient
hk at a distance of dk meters is generated as hk =

√
βkh̃k,

where path loss βk = −35.3 − 37.6 log10(dk) (in dB) and
h̃k is independently generated via Rayleigh fading CN (0, I).
The noise power spectral density N0, the uplink bandwidth
B, the system latency constraint T thr and the sum power
constraint Psum are set to −174dBm/Hz, 10MHz, 1s and
30mW, respectively [18].

Fig. 2 shows the convergence results of the FL system
over shared wireless MIMO networks under different device

scheduling policies. To better illustrate the simulation results,
we make plot using one point for every 10 result data samples
(i.e., 1, 11, 21, . . .). To be specific, ‘Full’ scheduling policy
represents that all devices participate in the training process
at each FL round without the wireless resource constraints.
This is equivalent to conventional centralized ML scheme.
‘Proposed’ scheduling policy represents that we select a subset
of devices using the proposed Algorithm 1 at each FL round.
‘Random’ scheduling policy represents that we randomly
select a subset of devices at each FL round. Such randomly
selected subset is required to pass feasibility test in Algorithm
2 and thereby satisfies the wireless resource constraints. The
simulation results manifest that the proposed scheduling policy
could allow more weighted devices to participate in each
training round, and consequently brings smaller convergence
optimality gap and higher model training accuracy than the
random scheduling policy. Observation from numerical exper-
iments further verify the convergence analysis result in Section
III-A, i.e., the convergence optimality gap decreases as the
weighted sum of scheduled devices increases at each FL round.

VI. CONCLUSION

In this paper, we proposed a novel joint device scheduling
and receive beamforming design approach for a delay-aware
MIMO FL system. Specifically, we established the conver-
gence analysis of the FL system, and then joint optimized the
receive beamforming design and the device scheduling to max-
imally schedule weighed devices so as to further reduce the
convergence optimality gap. Numerical results demonstrated
that the proposed device scheduling policy could substantially
enhance the learning performance of the FL process compared
with the random scheduling policy.

APPENDIX A
PROOF OF THEOREM 1

Combining the update rule (2) of device k and aggregation
rule (3) of the edge server, we have

wt =

∑
k∈St αk

(
wt−1 − ηt

∑nk
i=1∇f(wt−1;ξk,i)

nk

)
∑
k∈St αk

=wt−1 − ηt

∑
k∈St

αk

nk

∑nk

i=1∇f(wt−1; ξk,i)∑
k∈St αk

=wt−1 − ηt (∇F (wt−1) + et) ,

(23)



where the residual term et is defined as

et =
1∑

k∈St αk

∑
k∈St

αk
nk

nk∑
i=1

∇f(wt−1; ξk,i)

−
∑
k∈K

αk
nk

nk∑
i=1

∇f(wt−1; ξk,i)︸ ︷︷ ︸
∇F (wt−1)

=

∑
k/∈St αk∑
k∈St αk

∑
k∈St

αk
nk

nk∑
i=1

∇f(wt−1; ξk,i)

−
∑
k/∈St

αk
nk

nk∑
i=1

∇f(wt−1; ξk,i).

(24)

Under Assumption 2, we apply the norm inequality to et

‖et‖22 ≤

(∑
k/∈St αk∑
k∈St αk

∑
k∈St

αk
nk

nk∑
i=1

‖∇f(wt−1; ξk,i)‖2

+
∑
k/∈St

αk
nk

nk∑
i=1

‖∇f(wt−1; ξk,i)‖2

2

≤4κ

∑
k/∈St

αk

2

.

(25)

Under Assumption 1 and 0 < ηt ≡ ς ≤ 1
L , we have

F (wt) ≤F (wt−1) + (
ς2L

2
− ς) ‖∇F (wt−1)‖22 +

ς2L

2
‖et‖22

+ (ς − ς2L)∇F (wt−1)Tet
≤F (wt−1)−

ς

2
‖∇F (wt−1)‖22 +

ς

2
‖et‖22 .

(26)
Substitute (25) into (26), we obtain

‖∇F (wt−1)‖22 ≤
2 (F (wt−1)− F (wt))

ς
+ 4κ

∑
k/∈St

αk

2

.

(27)
Then, summing both sides of (27) for t ∈ {1, . . . , τ} and
combinging F (wτ ) ≥ F (w∗), we can obtain Theorem 1.

REFERENCES

[1] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The
roadmap to 6G: AI empowered wireless networks,” IEEE Commun.
Mag., vol. 57, no. 8, pp. 84–90, 2019.

[2] Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-
efficient edge AI: Algorithms and systems,” IEEE Commun. Surveys
Tuts., vol. 22, no. 4, pp. 2167–2191, 4th Quart. 2020.

[3] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
Netw., vol. 34, no. 3, pp. 134–142, 2020.

[4] H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland, and
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[12] M. M. Amiri and D. Gündüz, “Federated learning over wireless fading
channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3546–
3557, 2020.

[13] Z. Wang, J. Qiu, Y. Zhou, Y. Shi, L. Fu, W. Chen, and K. B. Letaief,
“Federated learning via intelligent reflecting surface,” IEEE Trans.
Wireless Commun., pp. 1–1, 2021. doi: 10.1109/TWC.2021.3099505.

[14] K. Yang, Y. Shi, Y. Zhou, Z. Yang, L. Fu, and W. Chen, “Federated ma-
chine learning for intelligent IoT via reconfigurable intelligent surface,”
IEEE Netw., vol. 34, no. 5, pp. 16–22, 2020.

[15] H. Liu, X. Yuan, and Y.-J. A. Zhang, “Reconfigurable intelligent
surface enabled federated learning: A unified communication-learning
design approach,” IEEE Trans. Wireless Commun., pp. 1–1, 2021. doi:
10.1109/TWC.2021.3086116.

[16] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in Proc. IEEE Conf. Comput. Commun., pp. 1387–1395,
2019.

[17] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Convergence time opti-
mization for federated learning over wireless networks,” IEEE Trans.
Wireless Commun., vol. 20, no. 4, pp. 2457–2471, 2021.

[18] W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Joint device schedul-
ing and resource allocation for latency constrained wireless federated
learning,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 453–467,
2021.

[19] L. Li, L. Yang, X. Guo, Y. Shi, H. Wang, W. Chen, and K. B. Letaief,
“Delay analysis of wireless federated learning based on saddle point
approximation and large deviation theory,” EEE J. Sel. Areas Commun.,
pp. 1–1, 2021. doi: 10.1109/JSAC.2021.3118431.

[20] T. T. Vu, D. T. Ngo, N. H. Tran, H. Q. Ngo, M. N. Dao, and R. H.
Middleton, “Cell-free massive MIMO for wireless federated learning,”
IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6377–6392, 2020.

[21] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, pp. 50–60, May 2020.

[22] D. Liu and O. Simeone, “Privacy for free: Wireless federated learning
via uncoded transmission with adaptive power control,” IEEE J. Sel.
Areas Commun., vol. 39, no. 1, pp. 170–185, 2021.

[23] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2020.

[24] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1,
pp. 269–283, 2021.

[25] J. Zhao, T. Q. S. Quek, and Z. Lei, “User admission and clustering for
uplink multiuser wireless systems,” IEEE Trans. Veh. Technol., vol. 64,
no. 2, pp. 636–651, 2015.

[26] Y. Shi, J. Zhang, and K. B. Letaief, “Group sparse beamforming for
green Cloud-RAN,” IEEE Trans. Wireless Commun., vol. 13, no. 5,
pp. 2809–2823, 2014.

[27] D. W. H. Cai, T. Q. S. Quek, and C. W. Tan, “A unified analysis of max-
min weighted SINR for MIMO downlink system,” IEEE Trans. Signal
Process, vol. 59, no. 8, pp. 3850–3862, 2011.

[28] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna
downlink with per-antenna power constraints,” IEEE Trans. Signal
Process, vol. 55, no. 6, pp. 2646–2660, 2007.


