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Abstract In this paper, the back-illuminated In0:09Ga0:91N p–i–n ultraviolet photodetectors

have been fabricated and simulated. The responsivity characteristic was shown experi-

mentally and theoretically. The peak responsivity of photodetector was improved from

0.06 A/W at 394 nm to 0.19 A/W at 402 nm since the growth of a 30 nm i-GaN layer

between i-InGaN layer and n-GaN layer. The photodetector models and characteristics

were numerical simulated and optimized by Silvaco TCAD semiconductor simulation

software. The simulation results revealed that the responsivity has great relationship with

the Shockley–Read–Hall recombination lifetime, intrinsic layer thickness and extinction

coefficient k. In addition, the simulation results were in good agreement with the experi-

mental results when the SRH recombination lifetime about 0.01–0.1 ns and the In com-

position x introduced a 0.05 increment of In0:09Ga0:91N layer.

Keywords InGaN � p–i–n � Ultraviolet photodetector � Simulation � Responsivity

1 Introduction

It is well known that the III-N semiconductor materials have a wurtzite crystal and a direct

energy bandgap, better chemical resistance and wider operational temperature range.

Therefore, the gallium nitride-based semiconductors have attracted much attention on light

emitting devices (LED) Nakamura et al. (1995), laser diodes Nakamura et al. (1996),

ultraviolet photodetector Su et al. (2002) and high power and high-electron-mobility-
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transistors (HEMTs)Park and Bayram (2016), Wu and Alamo (2016), Wang et al. (2012)

over twenty years.

At room temperature, the bandgap energy of InGaN from 0.7 to 3.4 eV depends on

composition. Its corresponding wavelength can vary from the ultraviolet (365 nm) to the

near-infrared (1770 nm). Therefore, the photodetector can detect the different wavelength

by adjusting the In component x of InxGa1�xN. Although the InGaN LED has been

commercialized and the InGaN quantum well solar cells have been reported widely.

However, only a few research groups concentrating on the InGaN-based ultraviolet pho-

todetector. The InGaN p–i–n photodiode reported exhibit a responsivity of 0.037 A/W at

426 nm with zero-bias Berkman et al. (2008). The high peak responsivity reported for a

photodetector with 0.206 A/W at wavelength of 380 nm Su et al. (2009). LU Yi-dan et al

reported that an unit front-illuminated InGaN p–i–n ultraviolet photodetector displayed an

unbiased responsivity of 0.22 A/W at 378 nm Lu et al. (2014). Moreover, there were

papers studied on the InGaN photodetector by Silvaco TCAD.

In this paper, we fabricated the back-illuminated In0:09Ga0:91N ultraviolet photodetec-

tors. The electric filed and responsivity properties of the photodetectors will be simulated

and discussed by Silvaco TCAD. Furthermore, we discussed about the SRH recombination

lifetime, the thickness of p-GaN layer, i-InGaN layer, n-GaN layer, the extinction coef-

ficient and the polarization intensity for affecting the responsivity of the photodetector in

detail. It was found that the simulation results can verify the theoretical parameters impact

on the photodetector performances and provide a powerful reference for designing feasi-

bility of the detector.

2 Experimental and important parameters

2.1 Device fabrications

The In0:09Ga0:91N epitaxial layers presented in this work were all grown on c-face (0001)

double-sided polished sapphire substrates by Huazhong University of Science and Tech-

nology using a low-pressure metal organic chemical vapor deposition (MOCVD) system.

In this experiment, trimethylindium (TMIn), trimethylgallium (TMGa) were used as

sources of In and Ga, respectively, and nitrogen ðN2Þ were used as carrier gases. The Silane

ðSiH4Þ ðCp2MgÞ was used as the n-type sources and the biscyclopentadienyl magnesium

was used as the p-type dopant, respectively. Here we designed two samples. The structure

of sample 2 for fabricated back-illuminated In0:09Ga0:91N photodetector p–i–n consist of a

c-face (0001) sapphire substrate layer, a 1.5-lm-thick GaN buffer layer, a 2.8-lm-thick Si-

doped n-GaN window layer, a 30-nm-thick undoped i-GaN layer, a 280-nm-thick undoped

i-In0:09Ga0:91N active layer, and a 230-nm-thick Mg-doped p-GaN layer. Yet the sample 1

has the same structure, except that without the 30-nm-thick i-GaN layer. Figure 1 shows

the structures and SEM images of samples. It can be found that the interfaces were clearly

indicated that epitaxial layers with high quality. The In0:09Ga0:91N ultraviolet photode-

tectors were fabricated by the standard III–V group device fabrication processes by pho-

tolithography and inductively coupled plasma etching (ICP). The Ni/Au/Ni/Au (20/20/20/

20 nm) and Ti/Al/Ti/Au (50/50/30/30 nm) was evaporated by electron-beam evaporation as

p-type electrode and n-type electrode, respectively. The samples were annealed in RTP 500

rapid thermal annealing furnace after lift-off which was contributed to form the ohmic
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contact. Finally, a 300-nm-thick SiO2 layer was deposited via plasma-enhanced chemical

vapor deposition (PECVD) for passivation.

2.2 Important parameters

The Silvaco TCAD is based on the a series of physical models for mathematical calcu-

lations. Those models consist of the fundamental physical equations which have been

derived from the Maxwell’s laws and Poisson’s equation, the carrier continuity equations

and the transport equations. In this study, we will use the carrier generation/recombination

model, the carrier drift diffusion model, the bandgap narrowing model and the high/low

field mobility model et al in the back-illuminated In0:09Ga0:91N p–i–n ultraviolet pho-

todetector simulation. For the InxGa1�xN material, the bandgap energy obey to the Vgard’s

Law SILVACO (2015) which is given by Eq. (1).

Eg InxGa1�xNð Þ ¼ xEg InNð Þ þ 1 � xð ÞEg GaNð Þ � 1:43x 1 � xð Þ ð1Þ

Here, Eg(InN) and Eg(GaN) are the bandgap energy of InN and GaN at 300 k,

Eg(InN) ¼ 0:7 eV, Eg(GaN) ¼ 3:4 eV, respectively.
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Fig. 1 The structures and SEM images of the samples. a Schematic diagrams of the samples, b SEM
images of the samples
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The refractive index is a very important parameter that affects the photons absorption

for the material. And for InGaN material, it can be expressed by the complex refractive

index which is given by Eq. (2)

~n ¼ nþ ik ð2Þ

where n is the refractive index and k is the extinction coefficient. Using the Adachi’s

refractive index model generally for the InxGa1�xN material which is expressed by Eq. (3)

Piprek (2003)

nr mð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A
hm
Eg

� ��2

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ hm
Eg

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � hm
Eg

s
( )

þ B

v

u

u

t ð3Þ

where, Eg is the bandgap, m is the optical frequency of the incident photons and A, B are the

material composition dependent parameters. The A and B parameters expressions are given

by Eqs. (4) and (5)

A xð Þ ¼9:83 1 � xð Þ+ 53:57x ð4Þ

B xð Þ ¼2:74 1 � xð Þ � 9:19x ð5Þ

The extinction coefficient k can be obtained by the relationship with the absorption

coefficient a from Eq. (6).

a ¼ 4pk
k

ð6Þ

The absorption coefficient a is expressed by Eq. (7) Brown et al. (2010).

a hvð Þ ¼ 105

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a hv� Eg

� �

þ b hv� Eg

� �2
q

cm�1 ð7Þ

where, a and b are the fitting parameters. For GaN, a is 3.52517, b is -0.65710 and for InN,

a is 0.69642, b is 0.46055. The other values of a and b in composition fraction x range from

0 to 1 over scope of the whole InxGa1�xN are obtained by linear interpolation, their values

are shown in Table 1.

In the lattice mismatch between heterojunctions due to the different lattice constants

produce spontaneous polarization and piezoelectric polarization. Those stresses create

higher interface charges density at heterojunctions interface between InGaN/GaN layers.

At the same times, the Vegard’s Law is used to calculate the interface charges for the

spontaneous polarization and piezoelectric polarization intensity of the InxGa1�xN mate-

rial. The spontaneous polarization is caused by non-ideal symmetry of internal structural

under no stress Ambacher et al. (2002). The spontaneous polarization of the InxGa1�xN is a

Table 1 The values of a and b in the InxGa1�xN absorption coefficient model

x 0 0.5 0.57 0.69 0.83 1

a 3.52517 0.51672 0.60946 0.58108 0.66796 0.69642

b -0.65710 0.46836 0.62182 0.66902 0.68886 0.46055
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function of In composition fraction x given to second order in x which is expressed by

Eq. (8).

Psp InxGa1�xNð Þ ¼ �0:042x� 0:034 1 � xð Þ þ 0:038x 1 � xð Þ ð8Þ

The intensity of the piezoelectric polarization which results from the stress effect of the

heterojunctions interface and the lattice constants mismatch Piprek (2007) can be

expressed by Eq. (9).

Ppiezo ¼ 1 � Rð Þ2 a� a0

a0

e31 � e33

C13

C33

� �

ð9Þ

where, R is the strain relaxation degree, a0 is the substrate lattice constant, a is the epitaxial

layer lattice constant, e33 and e31 are the piezoelectric constants, and C13 and C33 are the

elastic constants. The total macroscopic polarization intensity P is the sum of the spon-

taneous polarization Psp and the piezoelectric polarization Ppiezo intensity that can be

expressed as P ¼ Psp+ Ppiezo. The thin polarization-induced charges of the InGaN/GaN

interface are equal to the polarized charges of the upper layer minus the polarized charges

of the lower layer.

3 Results and discussion

Figure 2 shows the spectral responsivity of sample 1 and sample 2 at zero bias. The

spectral responsivity was measured by a test system which was consists of a xenon lamp, a

monochromator, and a computer-controlled SR570 current preamplifier. The light from

Xenon lamp went-through the monochromator and then irradiated to the photodetector.

The photodetector converted the incident light into the response current. The current was

amplified by the SR570 and the current data was recorded by computer. In addition, the test

responsivity must be calibrated by standard Si photodetector. The spectral responsivity of

photodetectors was improved from 0.06 A/W at 394 nm of sample 1 to 0.19 A/W at

402 nm of sample 2. It was clear that the response band of sample 2 was larger than sample

1. The possible reason was that the In composition x was not well controlled under the

growth process. According to long cutoff wavelength of the spectral responsivity can be

calculated the In composition x of sample 1 is 0.09, the sample 2 is 0.14.

Fig. 2 Sepctral responsivity of
sample 1 and sample 2 at zero
bias
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Figure 3 shows the dark current-voltage characteristics of InGaN photodetectors. The

I–V measurements were carried out on a cascade probe station using a Keithley 236

semiconductor analyzer. The phototsensitive suface was circular with diameters of 40,

50 lm.The dark current of sample 2 was as low as 1 lA at reverse bias of -10 V, and dark

current of sample 2 was much less than sample 1.

The back-illuminated InGaN p–i–n ultraviolet photodetector was simulated by Atlas

module in Silvaco TCAD. For studying the factors that affect the responsivity of the InGaN

photodetector, we have made a detail analysis of the sample 2 structure. Here, we have

studied the SRH recombination lifetime, the thickness of n-GaN layer, i-InGaN layer and

p-GaN layer, the extinction coefficient k and the polarization intensity, mainly.

The electric filed across the structure of the samples simulated by Silvaco TCAD, as

shown in Fig. 4. It can be found that the electric filed at i-GaN/n-GaN interface of sample

2 was much smaller than sample 1 at the i-InGaN/n-GaN interface. The electric filed

decreased from 0.375 MV/cm of sample 1 to 0.135 MV/cm of sample 2. One possible

reason could be that the 30-nm-thick i-GaN increase the distance of build-in potential

impact. In addition, the 30-nm-thick i-GaN layer can reduce the polarized charge density.

If the relaxation degree R=0, the spontaneous polarization charge density of sample 1 was

�0:0316 C/m2 at i-In0:09Ga0:91N/n-GaN interface. However, sample 2 spontaneous polar-

ization charge density was �0:0305 C/m2 at i-In0:14Ga0:86N/i-GaN interface. The polarized

charge resulting in form a electron barrier and attract a large number of holes at interface to

form an induced p–n junction. The direction of the electric field of the induced p–n

junction was opposite to that of the original p–n junction. The photo-generate carriers were

recombined by induced p–n junction. Therefore, the 30-nm-thick i-GaN growth between

i-InGaN and n-GaN can increase responsivity. Wang et al. (2010) had demonstrated that

decrease in the polarized charge density can increase the spectral responsivity.

Figure 5 shows the spectral responsivity of the sample 2 with different SRH recom-

bination lifetime compare against the experimental values. It can be found that the biggest

peak responsivity was 0.22 A/W at 398 nm when the SRH recombination lifetime was

about 10 ns. Furthermore, the sample 2 was remained a high responsivity about 0.19 A/W

at the wavelength of 380–425 nm. It was found that the simulation results were in good

agreement with the experimental values when the SRH recombination lifetime about

0.01–0.1 ns. According to the formula between the diffusion length and the carrier lifetime,

the diffusion distance of electrons and holes decreased with the decrease of the carrier

recombination lifetime The peak responsivity was less than 0.10 A/W when the SRH

Fig. 3 Dark current–voltage
(I–V) characteristics of samples
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recombination lifetime was 0.001 ns. Therefore, the number of carriers recombination

increased and the number photo-generated of carriers decreased in the depletion region,

which resulted in the responsivity decreased.

Fig. 4 Electric filed profile of
sample 1 and sample 2

Fig. 5 The spectral responsivity
with different SRH carrier
recombination lifetime and the
experimental values

Fig. 6 The spectral responsivity
with different n-GaN thickness
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Next, the spectral responsivity with different thickness of each layer of the back-

illuminated p–i–n photodetector was studied. Figure 6 shows the responsivity spectral

with different n-GaN thickness when the thickness of i-InGaN layer was 280 nm. It was

noted that the responsivity of less than 398 nm was decreased with the thickness of n-GaN

layer increased of the sample 2. As we know, the absorption edge of GaN layer was 365

nm. It means that the light of wavelength less than 365 nm was absorbed by n-GaN layer. It

was found that the absorption length in n-GaN layer was less than 0.8 lm by calculating

the absorption length relationship with wavelength. Therefore, the absorption length was

less than 800 nm in the n-GaN layer for the wavelength of light less than 365 nm. In

addition, the responsivity decreased with the increase of the n-GaN layer thickness at

365–398 nm. The ultraviolet light can’t be absorbed completely at 365–398 nm, which

results in a small counts of photons absorbed by the depletion layer form a response signal

directly. It was noted that increase of the n-GaN thickness caused the number of photons

absorbed by the depletion layer to decrease so that the responsivity was decreased.

The appropriate thickness of intrinsic layer can be designed to achieve the optimal peak

responsivity. The responsivity increased with the rise of thickness of i-InGaN layer in a

certain range when the thickness of p-GaN layer and n-GaN layer unchanged, as shown in

Fig. 7. Because that the depletion layer width would be increased with the thickness of

i-InGaN layer, the effective working area of photoelectric conversion increased. It means

that the number of photons absorbed increased with increase of i-InGaN layer, so the

responsivity can be improved. However, it can be found that the responsivity was not

obviously increased and saturated gradually when the thickness of i-InGaN layer was more

than 400 nm.

It was found that the electric field intensity decreased with the increase of i-InGaN

layer. At the same time, the recombination probability of the photo-generated carriers was

increased during drift process so that the device responsivity increased was not obvious.

The responsivity was drop rapidly when the thickness of i-InGaN layer exceeds 800 nm.

We can clearly explain those results in two reasons. First, the electric filed intensity was

drastically decreased near the n-GaN side, as shown in Fig. 8, which leading to the drift

velocity decreased drastically. The other one was the drift distance increasing with the

increase of thickness of i-InGaN layer. These two reasons lead to increase of carrier

recombination probability and decrease of responsivity. Furthermore, the resistance value

of the device was increased with increase of the thickness of i-InGaN layer that results in

the RC time constant increased and the response speed of the device decreased.

Fig. 7 The spectral responsivity
with different i-InGaN thickness
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Figure 9 shows that the responsivity of the sample 2 with different p-GaN thickness. It

can found that the responsivity was substantially independent of the thickness of p-GaN

layer. The incident photons were almost completely absorbed by i-InGaN layer on the

detector, no extra incident photons into the p-GaN layer to form the response signal.

The III-N materials have the different refractive index n and extinction coefficient k

with different wavelength light. The refractive index n mainly affects the photons energy

are less than the bandgap width that cannot be absorbed by the material, while the

extinction coefficient k mainly affects the photons energy are greater than the bandgap

width that can be absorbed. So the refractive index n parameter influence was much

smaller than the extinction coefficient k on the responsivity. Therefore, determining the

accurate extinction coefficient k was vital important for the device simulation by Silvaco

TCAD calculation.

Wang et al. (2010) found that the crystalline quality and surface morphology of InGaN

layer depredates with increasing thickness. Moreover, the InGaN layer strain relaxation

and In components x increased with the increase of the thickness of InGaN layer. Figure

10 shows that responsivity spectral curves of structure 2 with i-In0:09Ga0:91N,

i-In0:14Ga0:86N and the experimental results. It can be seen that the simulation results were

in good agreement with the experimental result when In component x was introduced in a

Fig. 8 The electric field
distribution with different
i-InGaN thickness

Fig. 9 The spectral responsivity
with different p-GaN thickness
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0.05 increment as i-In0:14Ga0:86N. It means that the InGaN layer strain relaxation has a

great influence on the responsivity of p–i–n photodetector.

Considering of the effect of strain relaxation on the materials, a thin charge layer was

set up between i-InGaN layer and p-GaN layer to substitute for the polarized charges. Since

the thickness of the intercalation layer was about 2 nm, the effect of ionization free carriers

can be negligible on the whole device. Here, the polarization charge density can convert to

the doping concentration of the intercalation layer, express by Eq. (10)

dN ¼ Q

V
¼ Q

S � d ¼ r
d

ð10Þ

where, Q is the total amount of polarized charge, V is the volume of the intercalation layer,

S, d are the intercalation layer area and thickness, r is the polarized interface charge

density.

The effect of different polarization intensities on the responsivity spectral of the back-

illuminated p–i–n detector was shown in Fig. 11a. It was found that the polarization

strength had little effect on the responsivity of the device. The intensity of the electric field

increased with the strain relaxation degree R = 0 to R = 1 from 0:13 MV/cm to 0.15 MV/

cm at the p-GaN/i-InGaN interface, as shown in Fig. 11b. Therefore, the total intensity of

Fig. 10 The responsivity
spectral of structure 2 with
i-In0:09Ga0:91N, i-In0:14Ga0:86N
and the experimental values

(a) (b)

Fig. 11 The effect of different polarization intensities on responsivity curves and electric field distributions
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the depletion layer had little change, which had little effect on the photon absorption that

the responsivity no change of the device.

4 Conclusion

In this paper, the back-illuminated In0:09Ga0:91N p–i–n ultraviolet photodetector were

fabricated by the standard III-V group device fabrication processes and simulated by the

Atlas module of Silvaco TCAD semiconductor simulation software, responsively. The

spectral responsivity of photodetector was improved from 0.06 A/W at 394 nm to 0.19

A/W at 402 nm achieves a high peak responsivity since growth of a 30-nm-thick i-GaN

layer between the i-InGaN layer and the n-GaN layer. The responsivity characteristics of

In0:09Ga0:91N p–i–n ultraviolet photodetector were studied in detail. The simulation results

reveal that the responsivity has great relationship with the SRH recombination carrier

lifetime, intrinsic layer thickness and extinction coefficient k. Photo-response results

indicate that polarization charge has little effect on the responsivity of the device because

of the In composition x was only 0.09. Finally, when the In composition of InGaN

introduced a 0.05 increment and the SRH recombination lifetime about 0.01–0.1 ns, the

responsivity spectral was in good agreement with the experimental results in the back-

illuminated In0:09Ga0:91N p–i–n ultraviolet photodetector.
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