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Abstract—The energy-efficient task offloading problem of a
massive multiple-input multiple-output (MIMQO)-aided fog com-
puting system is solved, where multiple task nodes offload their
computational tasks to be solved via a massive MIMO-aided fog
access node to multiple processing nodes in the fog for execution.
By considering realistic imperfect channel state information
(CSI), we formulate a joint task offloading and power allocation
problem for minimizing the total energy consumption, including
both computation and communication power consumptions. We
solve the resultant non-convex optimization problem in two
steps. First, we solve the computational task allocation and
computational resource allocation for a given power allocation.
Then, we conceive a sequential optimization framework for
determining the specific power allocation decision that minimizes
the total energy consumption of the fog access node. Given the
computational tasks, the computational resources, and the power
allocation, we propose an iterative algorithm for the system opti-
mization. The simulation results show that the proposed scheme
significantly reduces the total energy consumption compared to
the benchmark schemes.

Index Terms—Fog computing, massive MIMO, computational
task offloading, energy efficiency, fog access node.

I. INTRODUCTION

Given the rapid development of the Internet of Things (IoT),
more and more intelligent things and smart objects are being
connected to the network [1]], [2]. Meanwhile, the improved
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networking speed paves the way for sophisticated multitasking
applications, such as online gaming, augmented reality and
space-air-ground services [3]], [4]]. These novel applications
typically require low latency and demand prompt compu-
tations energy mangement for realtime task processing and
high data rates. However, given their compact form-factor,
mobile devices have limited computation, storage, and energy
resources. To overcome these limitations, fog computing,
as an emerging technology, has been proposed for sticking
a compelling compromise between the resource-constrained
nature of compact devices and their high-complexity tasks. As
a result, fog computing is capable of significantly reducing
the computing burden of the mobile devices by efficiently
utilizing the abundant computation resources in the fog around
them, which is taking advantage of pervasive mobile devices
and their pairwise encounters to form a pool of computation
resources.

However, in fog computing, a user offloads his/her com-
puting task to a server in the uplink, and the processed data
has to be sent back to the user in the downlink. Hence,
the performance of fog computing operation also depends
on the communication performance. With the advent of the
fifth generation (5G) wireless standards, new high perfor-
mance technologies have been introduced. One of these key
technologies is constituted of massive Multiple-input multiple-
output (MIMO) systems [5]], [6]], which are being increasingly
adopted in different networking and computing frameworks.
The authors in [7]-[10] mainly consider single-antenna sys-
tems taking joint wireless resources and task offloading into
account and fail to exploit the advantages brought by MIMO
technology in terms of offloading efficiency. MIMO techniques
have the potential of achieving high channel capacity [11]-
[13[]. New technologies are being introduced to improve the
performance of mobile users from current levels. By equipping
the base stations (BSs) with a large number of antennas, widely
known as massive MIMO, has emerged as one of the most
promising solutions [[14]], [[15] that significantly enhance the
systems spectral efficiency (SE) and energy efficiency (EE)
trade-off. More specifically, when the number of antennas
increases, the channels become more deterministic, which
is referred to as channel hardening. Hence, the achievable
data rates are mostly determined by large-scale fading, and
so is the resource allocation. This means that there is no
need to frequently update the resource allocation, yielding
substantial savings in the signalling overhead. In all, massive
MIMO schemes increase the spectral and energy efficiencies
and support an increased number of users, both of which are



crucial for fog computing systems.

Additionally, relay techniques have been integrated into
various wireless communication standards to improve the
coverage and throughput [[16]]. MIMO relay networks facili-
tate spectral-efficient, and reliable data transmission between
spatially distributed user nodes and multi-antenna destinations
via intermediate multi-antenna relay nodes [17]], [[18]]. In this
work, we propose to use a massive MIMO-aided fog access
node (FAN) regarded as a relay for significantly improving the
data rate of computational task offloading as well as the task
execution efficiency.

A. Related Works

In recent years, task offloading has gained increasing at-
tention in a diverse range of fog computing scenarios [8], [9],
[19]-[23]). In contrast to the traditional cloud-based computing
architecture, fog computing provides a more efficient platform
for low-latency task offloading at a high energy-efficiency.
In particular, Li et al. [|24] explored the concept of mobile
cloudlets in mobile cloud computing through studying the
cloudlet properties and the computing performance attained.
Xiao et al. [25] proposed a task offloading framework for a
mobile user, who may offload computing tasks to the nearby
devices for exploiting the processing capacity available in the
vicinity. Chen et al. [26] proposed a hybrid task offloading
framework to support both device-to-device (D2D) offloaded
execution and cloud offloaded execution. As a further devel-
opment, Pu et al. [[7] formulated an optimization problem for
minimizing the time-averaged energy consumption for task
execution of all users in D2D networks. Wang et al. [20]]
designed an online learning based task offloading algorithm
for delay-sensitive applications in dynamic fog networks by
exploiting the combinatorial multi-armed bandits (CMAB)
framework. Chen et al. [27] developed a novel framework that
enables the implementation of federated learning algorithms
over wireless network, which jointly considers power- and
computational-resource allocation. Yang et al. [9] proposed
an energy-efficient fog computing framework associated with
multiple neighboring helper nodes sharing their computational
resources, taking into account the opportunistic spectrum
access for spectrum sharing. Yang et al. [28] investigated a
fundamental multi-task multi-helper problem in heterogeneous
fog networks, i.e., how to effectively associate task nodes and
helper nodes to minimize the delay of every task. However,
since most of the contributions on task offloading have been
focused on the single-hop resource allocation, there is a
paucity of literature on multi-hop scenarios.

Resource allocation for peer offloading in fog-assisted s-
mall cell networks has been widely studied. Zhou et al
[29] proposed an online distributed task offloading (DTO)
algorithm for practical fog computing systems, where each
mobile user dynamically offloads its decision to nearby mobile
devices in a collaborative manner via peer-to-peer wireless
communications. Chen et al. [30] investigated peer offloading
schemes in mobile edge computing-aided small cell networks,
where diverse task arrival patterns are considered both in the
spatial and temporal domains. Although the above outstanding

contributions have studied peer-to-peer computation offloading
in single-antenna systems, the potential benefits of massive
MIMO schemes in further enhancing the performance of the
fog computing framework have not been explored. Different
from the conventional MIMO, massive MIMO configuration
relies on a large number of antennas and can significantly im-
prove the data rate of task offloading. It has been shown in [31]
that massive MIMO schemes significantly improve the data
rates of user equipments (UEs) at the cell edge, as well as the
overall network throughput. As expected, the integration of fog
computing and massive MIMO can enhance the performance
of task offloading in multi-user fog computing systems [32]—
[35]. In particular, Bursalioglu et al. [32]] proposed and ana-
lyzed an architecture nicknamed fog massive MIMO, where a
large number of multi-antenna BSs are densely deployed, and
serve the users using zero-forcing beamforming (ZFBF). In
[33[], Pirzadeh et al. investigated the viability of supervised-
learning methods in estimating the user locations by observing
across the fog massive MIMO network signals transmitted by
the users. In [34]], Chen proposed a specific fog computing
mechanism for the uplink of fronthaul-constrained distributed
massive MIMO systems (DM-MIMO), and the corresponding
power control algorithm. Mungara et al. [35] considered a new
architecture underpinned by, on-the-fly, pilot contamination
control, termed as fog massive MIMO, where the users are
able to establish high-throughput and low-latency data links
in a seamless and opportunistic manner, as they travel through
a dense fog of high capacity remote radio heads (RRHs).
Although the aforementioned studies have demonstrated the
benefits of massive MIMO-based fog computing, they have
not taken into account the channel estimation error in resource
allocation and task offloading, which are particularly important
for time-variant fog computing systems. On the other hand, as
the fog systems provide additional computing capabilities at
the edge of the network, a major question that they raise is
how to manage task execution. More precisely, how to decide
which tasks to be executed in the end-users stratum, the fog
stratum, and the cloud stratum. On a finer level, the dilemma
is which nodes a particular task should be assigned to.

B. Main Contributions

In this contribution, we jointly optimize the task offloading
and power allocation of the massive MIMO-aided fog comput-
ing systems, where robust resource allocation is conceived in
the face of realistic channel estimation errors. In our proposed
fog computing framework, some of the nodes referred to the
parlance as task nodes (TNs) have computationally-intensive
applications to run, which hence request the offloading of their
computational tasks via a massive MIMO-enabled FAN to
computing nodes (CNs) having under-utilized computational
resources. Again, we assume that the downlink (DL) channel
state information (CSI) of data transmission from the FAN
to the CN (FAN-CN) is imperfect. Then, we extend to the
imperfect CSI assumption to the link spanning from the TNs
to the FAN (TN-FAN), namely to the uplink (UL). After
establishing the total task offloading energy consumption, we
formulate a joint task offloading and power allocation problem.



The objective is to minimize the total energy consumption,
while taking into account the practical communication and
computation constraints. Since the optimization problem is
non-convex, it is challenging to obtain an optimal solution.
Additionally, considering imperfect CSI further complicates
the optimization problem. To this end, we solve the task
offloading and power allocation problem in two steps. First,
we determine the task and computation resource allocation for
given power allocation results. Then, we present a sequential
optimization framework for determining the power allocation
decision that minimizes the total energy consumption at the
TNs and the FAN. Based on the task-, computational resource-
, and power-allocations, we propose an iterative algorithm for
finding the jointly optimized results. The main contributions
of this paper are summarized as follows.

e We develop a novel massive MIMO-enabled task of-
floading framework, where multiple nodes offload their
computational tasks to multiple CNs via a massive
MIMO-aided FAN. We formulate an energy minimization
problem by jointly optimizing the allocation of tasks,
computational resource, and power.

o We partition the original optimization problem into two
subproblems, namely into, task and computational re-
source allocation subproblem and a FAN power allocation
subproblem. In the optimization problem, we first consid-
er realistic imperfect FAN-CN CSI and then we extend
to the imperfect TN-FAN CSI to obtain the robust power
allocation results.

o We formulate the power allocation subproblem as a
non-convex problem when the computational resource
allocations and power allocations of each node having
computational tasks are fixed, and present a sequential op-
timization framework for carrying out the power alloca-
tion decisions. Based on the task, computational resource,
and power allocations, we propose an iterative algorithm
for finding the jointly optimized results. Furthermore, we
prove the convergence of the proposed iterative algorithm.

e Our simulation results demonstrate that the proposed
computational task offloading and power allocation al-
gorithm achieves significant performance improvements
over the benchmarks.

The rest of the paper is organized as follows. Section II
describes our system model and problem formulation. Then,
we formulate a task offloading and power allocation problem.
In Section III, we introduce the total energy consumption
of our massive MIMO fog computing systems. In Section
IV, we optimize the task offloading, computational resource
allocation, and power allocation by proposing an iterative op-
timization algorithm for massive MIMO-aided fog computing
networks. In Section V, we discuss our simulation results.
Finally, our conclusions are provided in Section VI. Table [l
lists the frequently used notations.

Matrices and vectors are denoted by capital and lower-case
boldface letters, respectively. CM >N and RM*N denote the
sets of all M x N complex-valued matrix and real-valued
matrix, respectively. (-)¥, ()T, tr(-) and E(-) denote the
conjugate transpose, pseudo-inverse, trace and the expectation,
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Fig. 1. Illustration of a massive MIMO-aided fog computing network, where
K task nodes offload their tasks to K computing nodes in the fog with the
aid of a fog access node relying on a massive MIMO scheme.

respectively. i.i.d. stands for independent and identically dis-
tributed.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the network model of
the massive MIMO-enabled fog computing networks, present
the channel model as well as computational model, and then
formulate the total energy minimization problem.

A. Network Model

We consider a massive MIMO aided fog computing net-
work, consisting of K single-antenna TNs, an M -antenna
FAN, and K single-antenna CNs, as shown in Fig. Each
TN can either offload its task to the intended CN via the FAN
or execute the computational task locally. The multi-antenna
FAN serves as a relay to help offloading the tasks from the
TNs to the CNs. Due to the associated signal decoding and
resource scheduling complexities of non-orthogonal multiple
access (NOMA) and orthogonal multiple access (OMA), the
extension to consider task offloading from multiple task nodes
to multiple computing nodes is left for future discussions.

The fog computing system operates over a bandwidth of B
and the time is slotted into intervals of constant duration 7.
We assume that each CN can only execute one task from a
single TN during each time slot. Without loss of generality,
we also assume that the kth TN is paired with the kth CN
for task offloading, which is hence referred to as the kth TN-
CN pair. To reduce the offloading delay, the task offloading
procedures of all TN-CN pairs are performed simultaneously.
Additionally, there is no direct link between any TN and CN
due to propagation obstacles. The FAN relies on time-division
duplexing. In this context, the task offloading from the TN to
CNs consists of three phases, namely, the channel estimation
phase, the task uploading phase from the TNs to the FAN (i.e.,
TN — FAN phase), and the task relaying phase from the FAN
to the CNs (i.e., FAN — CN phase).

B. Channel Model

We consider independent and identically distributed (i.i.d.)
quasi-static Rayleigh fading. In particular, each inter-node
channel remains invariant within one time slot, but varies
independently across different time slots and links. As shown
in [36]], the assumption of i.i.d. Rayleigh fading permits the



TABLE 1
FREQUENTLY USED NOTATION

Definition Notation

Definition Notation

Number of TNs K Number of antennas of FAP M
Channel coefficient matrix from the K TNs to the FAN H CPU cycle frequency of TN k fr
Channel coefficient matrix from the FAN to the K CNs G Amount of task by
Ratio of data bits offloaded to the total task bits Vi Number of cycles needed for computing each single data bit €
Energy consumption of local computing at TN k Ek Power consumption of TN k P,f‘
Time duration of the task offloading from TN k D;g Average task offloading rate for the kth TN R
Energy c ion for the task off ing of TN k EZ f FAN transmit power allocated to the kth TN-CN pair Pl
Total energy consumption of task offloading of TN k Eotal,k Transmit power of each TN Py
SINR constraint Y0 maximum CPU-clock frequency of TN k Fmax
Transmit symbols of all the TNs x Symbol delivered from the kth TN to its paired CN Sk
Signal received at the FAN YR Additive white Gaussian noise at the FAN np
Precoding matrix of the FAN Signal received at all CNs YU

derivation of exact (non-asymptotic) ergodic capacity lower
bounds for very comprehensive Massive MIMO systems, and
experiments have established conditions under which this
model is approximately valid [37]. Let H = [hT,--- 'h%] €
CM*K denote the M x K channel coefficient matrix from
the K TNs to the FAN, where the kth element h; denotes
the channel coefficient vector between the kth TN and FAN,
kE = 1,2,...,K. Additionally, let G = [g],---,gk] €
CEXM denote the K x M channel coefficient matrix from
the FAN to the K CNs, where the kth element hp ;. denotes
the channel coefficient vector between the FAN and the kth
CN,k=1,2,...,K.

It is reasonable to assume that the CSI is perfectly known
at the receiver [38]], since the receiver can acquire the ac-
curate CSI at the receiver (CSIR) with training. However, the
transmitter can only acquire the imperfect CSI through a finite-
rate feedback channel, which introduces quantization error and
feedback delay. Consequently, we assume that the CSI in the
TN—FAN phase is perfectly known at the FAN as the UL
receiver, while the CSI in the FAN—CN phase is imperfectly
known at the FAN as the DL transmitter. Let G denote the
estimated FAN-CN channel CSI. In this context, the FAN-CN
channel can be modeled as [39]

G = 17T12)G+TDQD, (D

where Qp € CEXM has iid entries with zero mean and
unit variance independent of the estimated channel matrix G,
and the parameter 7p € [0, 1] reflects the estimation accuracy
or quality of the channel matrix G. The case of 7p = 0
corresponds to perfect CSI estimation, whereas the CSI is
completely unknown if 7p = 1.

C. Computation Models

In this subsection, we discuss both the local and the CN
computing approaches.

1) Partial Computing Offloading: Let us consider that TN
k has by, bits to be computed in a time slot. Let us furthermore
denote the ratio of data bits offloaded to the total task bits by
Vg, 1.€., (1 — vg)bg bits are subject to local computing and
vibi to CN computing.

For local computing, the power consumption of TN £ can
be modeled as [40]

Pt =of, )

where fj is the CPU cycle frequency of TN k, which can
be adjusted via the dynamic voltage and frequency scaling

(DVES) technique [41]. Thus, the local computing time of

TN £k is calculated as

€(1 — vg)by
fo

where € (¢ > 0) denotes the number of cycles needed for

computing each single data biﬂ Consequently, the energy
consumption of local computing at TN k is given by

3)

th =

Ef = PEty = oe(1 — vy)bi f7. 4)

As for computing by the CN, the TNs first offload their tasks
to the FAN. After collecting the input bits from the TNs, the
FAN distributes the tasks to the corresponding CNs. Let us
define the time duration of the task offloading from the TN &
to its intended CN by Dj. Thus, the energy consumption of
TN £ for task offloading is expressed as

El = P,Dy, (5)

where P; is the transmit power of each TN. We assume
furthermore that the time and energy consumptions of the TNs
required to download the computed results are negligible, since
the computing results are usually of small size and the FAN
has a high transmit power [42[]-[44].

2) Task Offloading: Task offloading refers to the case that
the task is offloaded for execution by the paired CN. The task
offloading time from TN £ to its intended CN is given by

Dk:77Vk7 (6)

where Ry is the average task offloading rate for the kth
TN. Correspondingly, the energy consumption for the task
offloading of TN £ is given by
o Py + pr)vrby
BT = (P, + pr) Dy = (B2 F pr)vbi R ) ; @)
k

where p, € p = [p1, - ,pK]| is the FAN transmit power
allocated to the kth TN-CN pair. Let P, denote the maximum
transmit power available at the FAN. As such, we have p; <
P..

Upon receiving the computational tasks, the CN allocates
its computational resources for task execution. In this context,
the total energy consumption of task offloading consists of the
local computing energy consumption and the task offloading

'Note that the parameters b, and e are determined by the types of
applications and estimated via task profilers [42].



energy consumption. After combining @)-(7), the total energy
consumption of task offloading of TN £ is given by

(P: + pr)vibi

R ®)

Etotal,k = Q€(1 - Vk)bkflg +

D. Problem Formulation

In this section, we formulate a joint task-, power-, and
computational-resource allocation problem with an objective
of minimizing the total energy consumption, taking into ac-
count both the communication and computational constraints.
Let P, in (9d) and - in denote the maximum transmit
power of each TN and the received signal-to-interference-plus-
noise ratio (SINR) at CN £, respectively. To minimize the
total energy consumption Fiota of K TNs and FAN while
ensuring that their tasks are successfully executed within a
single time slot, the energy-efficient multi-pair computation
offloading problem is formulated as

1111,1;1)2‘ Elotal (%a)
s.t. 0<wy, <1,VEk, (9b)
0 <px < P, VEk, %¢)

0< P, <P, (9d)

Yk = Y0, VK, (9e)

0 < fr < fmax, Yk, 9
M < T,Vk, 9g)

fr

where gives the range of the computational task offloading
ratio; specifies the power allocation variables for the
FAN; (@d) is the transmit power constraint for the TN;
is the quality-of-service (QoS) of delay constraints capable of
ensuring that the SINR of each TN-CN pair is higher than 7;
(Of) represents that the maximum CPU-clock frequency of TN
kis fmax-

III. ENERGY CONSUMPTION ANALYSIS

This section investigates the total energy consumption of
the massive MIMO-aided fog computing systems. Firstly, we
derive the received SINR for determining the offloading rate.
Secondly, the task offloading time is calculated. Finally, the
total energy consumption is analyzed.

A. Task Transmission

As for the task computation, a CN can execute either all
tasks after receiving all of them or some tasks while still
receiving more tasks. Given the overlapped arrival order of
tasks at the CN, the overlapping nature of the computing task
makes the analysis intractable. For simplicity, let us assume
that each CN only executes the task received from the intended
TN after receiving all tasks. As a result, we consider that task
transmission in massive MIMO-aided fog computing networks
consists of TN — FAN phase and FAN — CN phase.

In the TN — FAN phase, all TNs simultaneously transmit
their symbols to the FAN in a single time slot, which is given
by

x = /P;s, (10)

where s = [s1,--+,sk]T is an information-bearing symbol
vector with E(ss’) = I, and s;, is the symbol delivered

from the kth TN to its paired CN. The signal yp € CM*1
received at the FAN is

(1)

where ngp € is the zero-mean additive white Gaussian
noise (AWGN) at the FAN with a variance of E(ngnl) =
o21,;. Given the knowledge of perfect CSIR and imperfect
CSIT, the FAN precodes its received signal yr and obtains
the filtered signal vector xp € CM*1 as

yr = Hx + ng,
CM><1

xp = Wy, (12)

where W € CM*M s the precoding matrix. The precoding
matrix of the FAN can be written as

W = G'PH, 13)

where GT = GH(GGH)~! and HY = (H'H) 'H". The
diagonal matrix P € RE*E s the power allocation matrix
of the FAN, wherein the kth diagonal element [P] 1 = /px
denotes the transmit power allocated to the kth TN-CN pair.
The average power constraint at the FAN can be written as

Eltr(xgxh)] < P;. (14)
B. Received SINR at CN

During the FAN — CN phase, the FAN broadcasts xp to
all the K active CNs. The signal received at all CNs is given
by

yu = GWyg +ny, (15)
where yir = [y1,- - ,yx] € CE*1, and ny is the zero-mean
AWGN at the destinations with a variance of E(nyn}}) =

2
O'UIK.
Given (I3)), the signal vector received at all the CNs can be
rewritten as
yuU —GWHx + GWnR +ny
=GG'PH'Hx + GG'PH'ng + ny
:( 1-— T%G + TDQD)GTPX-F

- N (16)
(/1 - 732G +77pQp)G'PH'ng 4+ ny

=\/1=713Px+7pQ2pG'Px + /1 — 72PH np+

TDQDGTPHTDR +ny.
Based on (16), the signal received at the kth CN is

Yuk =V pkpt3k+\/pk-f;’knR+\/ katf;kFSS‘F?D,kXR"'nkv

(17
where yy k, Sk, and ny are th~e kth elements of yy, s, and
ng, respectively, and f ; i and fp j are the kth row of FTS and
Fp respectively. The effective SINR of the kth data stream at
the CN is given by

= (1 —73)pr P
P(CkCi) + o2 (memf!) + 02’
where (i, and 7 are Ehe kth rows of TDQDGTP and
(v/1-— 7'12)PHJr +7pQpGTPHT), respectively. In the follow-

ing theorem, we characterize the asymptotic property of the
SINR in (I8) under the massive MIMO setting.

(18)



Theorem 1. As the number of antennas at the FAN tends to
M — oo, the effective SINR in can be asymptotically
expressed as

Yoo = (1- Tj%)kat . (19)
, (1 —713)o2 M\ Zfilpﬂr@%

Proof: Please refer to Appendix A. ]

C. Offloading Time and Energy Consumption

Given (I8), the task offloading rate of the kth TN is given
by

B
Ric = 5 loga(1+ ), 0)
where B/2 indicates that the FAN works in the half-duplex
mode. Then, based on (6) and (20), the offloading time of the
kth TN is given by

2kak

_ 21
Blogy (11 7) @b

Dy, =

The total transmit energy consumption is given by that of
the TNs and the FAN. E] According to the transmit power
consumption of the TN and FAN, the corresponding offloading
energy consumption is given by

2(P + b
E = (P, + pr) Dy, = (Pt & pe)vibe

= - 2", 22
Blogy (1 + i) 22

Given the energy consumptions of the local computing and
task offloading in and (22), we obtain the total energy
consumption of the massive MIMO-enabled fog computing
system as

K
Etotal = Z (E;f + Egﬁ)

>
Il
—

(23)
2(P; +pk:)kak>
Blogy(14+) /)

I
]~

(Qﬁ(l — )b f7 +

=
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—

IV. JOINT RADIO AND COMPUTATIONAL RESOURCE

OPTIMIZATION

In this section, we jointly optimize the task offloading,
computational resource and transmit power allocations for
minimizing the total energy consumption at the TNs and FAN.
Firstly, we solve the subproblem of task- and computational-
resource allocation. Secondly, we solve the subproblem of
FAN power allocation. Finally, we optimize the joint problem
by conceiving an iterative algorithm.

2Following a practical power consumption model in [9], we assume that
the circuit power is a constant, accounting for the fixed power consumption
for controlling, site-cooling, and the load-independent power of baseband
processors. To simplify the problem, we only consider the transmit power
consumption.

A. Task- and Computational-Resource Allocation

In this subsection, we solve the task-scheduling subproblem
to obtain the task- and computational-resource allocation under
a fixed FAN power allocation. In the following, we transform
the non-convex optimization problem of (9) into a tractable
convex one.

Firstly, it can be verified that the objective function (OF) of
Problem (@) monotonically increases with fi, Vk. Secondly,
based on constraint (9g), we have f; > c(=vi)b "’”)b’“ . Finally, the
optimal CPU-cycle frequency of TN £ can be obtained as

x 6(]. — Vk)bk
fk - T .

By substituting (24) into (@), Problem (9) is equivalently
transformed into

(24)

Qe 1 — Vi bi 2(P; + Pk l/kbk
1’]91;1)1 ; T2 : + B(10g2(1 -)5- Vi) )
s.t. 0 <y <1,VEk, (25b)
0 < px < P, VEk, (25¢)
0< P <P, (25d)
Y& > Yo, Vk. (25e)

Nevertheless, the transformed problem (23] is still non-convex.
Next, we further divide it into two sub-problems of task- and
computational-resource allocation and FAN power allocation,
and solve them alternately.

The subproblem of task allocation with respect to the
computational task offloading ratio is given by

Z QE 1 — Vk Sbi 4 Q(Pt +pk)kak

HllIl
P Blog,(1 + i)
(262)
s.t. 0<wy <1,Vk. (26b)

Problem (26)) is convex and can be solved by using standard
algorithms, such as the classic interior-point method at a
polynomial computational complexity [45]. By taking the
derivative of the objective function with respect to sj, we have

dp(v) _ —306%(1 — i) %03 n 2(P; + pr)bk _o

Ovy, T2 Blogy(1 4+ k)

27

According to (27), we arrive at the optimal solution v} =
1— 2(Pi+pr)brT?
30€3b% Blog, (14+7k)

B. Power Allocation based on Sequential Optimization

In this subsection, we propose a sequential optimization
method for the FAN power allocation. By fixing the com-
putational task offloading ratio vector v, we only have to
solve the power allocation problem. Thus, problem can
be simplified to

min Z (P +pk Yibg i (P + pr)vibr

P b=1 glo& L+ k)

st. (9, ©9).

(28a)

(28b)



Due to the non-convex OF and constraints, Problem (28)) is
still intractable. Next we use Theorem 1| to make the problem
solvable. According to (I9), we have

(1- T%)Pkpt
(1—73)02 e S0, pi + 02
(1- T%)kat
=~ (1=713)02 \ipr + 02

Pf,o'u
Py (1—73)0ix2

02)% o3
T _ Cu
(1— TD)azAk

Ve < Voo =

(29)

Pr +

Now ~;, becomes a concave function of py. To begin with the
problem optimization, the OF of Problem (28)) can be rewritten
in form of a single ratio as

K
Z (P +pk kak Z (P; + pr)vibi
1 pat B log, (14 k)

Zk 1 (P + pi)vibi] [T 20 [51og, (1 + )]

and o(p) = Hk 1 [ logy(1 4 )], respectively.

Then, the Sequential Parametric Convex Approxima-
tion (SPCA) method of [46] can be applied to solve Problem
(28)), which can be transformed into the following problem

_ 9(p) . G0)

»(p)

where ¢(p) =

min M (31a)
r  ¢(p)
st. (99, (31b)
Ptai
P, A= 2)61x2
qo— | g = BT | <o (1o
o2k

o
L
Pk (1—7‘%)02)%

Since the OF in (28) is non-convex, standard convex opti-
mization algorithms are not guaranteed to solve it. Towards
this end, we have the following main result.

Lemma 1. The optimal solution of (BI) exists if and only if

v o(p)}, (32)

p" = argmin {¢(p) —
with ¢{* being the unique zero of the auxiliary function v(V),
where

v(¥)

—p(p)}. (33)

= min {¢(p)
P
Proof: The proof of Lemma [I]is given in Proposition 2.1
of [47]. ]
Therefore, solving problem (31} is equivalent to solving the
following optimization problem:

min #(p) — ¥ ¢(p) (34a)
s.t. (©d, (34b)
Pta'i
—72)0iAZ
yo— | - OB) e U
TR Pr +

(1— 7'2 )UZAk

As a result, at the nth iteration of the SPCA method, we
have to solve a convex Problem Let us introduce the notation

of g(pk ) =

(1—72 )(r 2 P,

— Dk oz L and F™(py) = 0 — 5 +

P+ o2
(1— TD)a%k

Q(p,(cn)), we have

P n
F (pr) =0 — Qf\k +G(p")
P o
<0 3 + G0
Ak - (n)) 35)
(n) . (n—1) 99 (py
(pk; pk ) 8pl(cn) ‘pgcn):pgcn—l)
=U" (py),

where the second inequality follows from the well-known
descent lemma (see [48]). Hence, Problem (34) becomes

Py: min ¢(p) — ¥ ¢(p) (36a)
P

s.t.  (O9), (36b)

U™ (pr) <0. (36¢)

The variable p,(cnfl) is a fixed parameter depending on the

solution of Problem P,_;. The SPCA method is detailed in
Algorithm[I] According to Sections I and II of [46], the idea of
choosing an arbitrary starting point in the feasible set works
well for the SPCA method. Thus, we only need to choose
arbitrary initial values of {p,(co) }, Vk. As shown in Algorithm

Algorithm 1 The framework of the power allocation algorithm
for problem (28)

1: Step 0: Initialize starting point p,,

(0) which is feasible to problem

@8), and set UV (p) = o — 2)% +G(p (O)) (PLI)
0)\ 99 (pg™)
) 81@ |<n>,p 0-
2: Step n: Compute p ) of Problem @
Set UMD (pr) = 70 — A + G0") + o -
" 89( (n))
Ii)) Izn) | in)=P1(cn)’ andn:nJrl.

we employ Dinkelbach’s algorithm to solve Problem (36) [47],
[49]. Now each subproblem of Algorithm 2] is a convex
minimization problem subject to convex constraints, which can
be globally solved at each iteration. Through iterations, Algo-
rithm 2] converges to the global optimum. Notably, Algorithm
[2] can be carried out at a polynomial-time complexity due to
its super-linear convergence rate [47].

Algorithm 2 The framework of the Dinkelbach’s algorithm
for Problem (36)

1: Initialize w and 1o with v(tbo) > 0, m = 0;

2: while v(¢,) > w do

3:  Solve the following problem:

(n)*

pli" = argmin {o(p") ~ v (p™)

(n)*
— ¢(Pm
Ymyr = : (n)*>’

m=m—+ i
4: end while

Additionally, we establish a convergence result for the
SPCA method in Lemma [2] Since the original problem (28)
is non-convex, it is not possible to prove the convergence to



a global minimum, but rather to the KKT points under some
regularity conditions.

Lemma 2. Let {p(™} be the sequence generated by the SPCA
method. If the sequence {p(")} converges to a regular point
{p*}, then {p*} is a KKT point of Problem (34).

Proof: Please refer to Appendix B. ]

C. Joint Power and Computational Resource Optimization

Given the above results from the two subproblems, the joint
power- and computational-resource optimization is formulated
in Algorithm [3]

Again, the power allocation solution can be found by solv-
ing a series of convex optimization problems at a polynomial
complexity. Furthermore, the subproblem of computational
resources optimization is a convex one, which can be opti-
mally solved at a polynomial complexity. In summary, the
proposed alternating optimization algorithm only requires a
polynomially increasing computational complexity with the
problem dimension.

Algorithm 3 Joint Power- and Computational-Resource Opti-
mization Algorithm

1: Initialize z = 0, ¢ = 1, and a feasible point p<0>.
2: while € > 0.001 do
3: z=z+1;
. Solve problem (26), and obtain v,
Calculate p® via Algorithn(l Yvith p#~ Y and v

U(z) l/

4
5
6:  Calculate € = maxy |W ;
7

: end while

Lemma 3. Algorithm[3|converges within finite iterations, since
the optimal solution of Problem [23) monotonically decreases
with the iterations.

Proof: Please refer to Appendix C. ]

D. Extension to Imperfect CSIR of TN-FAN Channel

In this subsection, we extend to consider the scenario that
the CSIR is imperfectly known at the FAN. Let H denote the
estimated TN-FAN channel CSI. Thus, the actual TN-FAN
channel can be modeled as [39]

:\/1—7'21:1-{-7'5!257

where g has i.i.d entries with zero mean and unit variance
independent of H, and the parameter 7g € [0, 1] reflects the
estimation accuracy or quality of H.

Following (T3), the precoding matrix at the FAN is given
by

(37

W = GiPHT,
where we have Gf = GHGG")™' and Hf =
(HYH)'H'. The signal vector received at the CNs can be
formulated as

U= GWHx + GWnR + ny
= GGPAHXx + GG'PH nR + ny (38)

=4/1- 7%1/1 — T?,;Px—&— Qux + GGTPI:ITHR +ny.

where Qp = /1 — 73 PH'76Qs + 7pQpGiIP/1 - T2 +
p2pGIPH 7sQp is the channel estimation error. In par-
ticular, the signal received at the kth CN is

v = /(1 = 73) (1 — 72) Popise + gu st

/(1= Tj%)pk.fllnR + [7’DQ,:)I:IJ]BPI:IT9 . ng +ng, (39)

where wy i, is the kth row of €2y;. The SINR of the kth data
stream is characterized by

: (1 —75)A = )PP

T = = )
Py(wogwfly,) + pi(1 = 75)02 (RL(BDT) + xi + 02

(40)

where x, = THo? {QDGTPI:IT(QD(A}TPI:IT)H . From

N

{@0), we have the following theorem.

(1=7p)A-TH)7D
1+7'D

and T3 = %ﬁl)m The SINR of the kth data stream

defined in [@0) can "be expressed as

Theorem 2. Let 7 = (1 — 7)1\, 2 =

. A —73)(1 = )Pl

Ve = s
Pio, + Efil pio2Ai(1 = 73) + L TiprAifBr + U(il)

K
where ar = Tipg + 72 ZZ 1Di + ﬁ’l’g Y i1 pi and B, =
1—72
1+T§ !
Proof: Please refer to Appendix D. [ ]

Based on Theorem [2] we have the following propositions.

Proposition 1. As the number of antennas in the FAN tends
to M — oo, the SINR in @I) can be asymptotically expressed
as

(1—73)( = 7)pe Pt

Z\ipk + Zl 1 Pio2 (1 —73) + 02
(42)

pyk,oo =
P(1—713)T

Proposition 2. If K TNs are capable of accessing the massive
MIMO-aided task offloading systems, then we have:

K < { (1 —713)A —73)PP, — (1 — 73)T2M\P:Pryo — 0270
B (1 = 7)Ao
(43)
Proof: Please refer to Appendix E. [ ]
Based on (@2), the FAN power allocation problem can be
expressed as

K
Z (P; + pr)vibi

P,
win Z (tﬂ’ifﬂkbk e e S
P= = 5 logy(1+ %)
st. ©d, (44b)
Yk = Yo, Vk. (44¢)

Theorem 3. Algorithm |3| can be used to solve the robust
average energy minimization problem given in (44).

Proof: Please refer to Appendix F. [ ]



V. SIMULATION RESULTS AND DISCUSSIONS

In this section, our simulation results characterizing the
proposed task offloading strategy are presented in comparison
to several baseline schemes. We consider the typical outdoor
wireless propagation environment, where the channel’s power
angle spectrum (PAS) can be modeled by the truncated Lapla-
cian distribution [50], [51], while the eigenvalues depend on
the channel PAS, which reveals a relationship between the
channel’s spatial correlations and channel power distribution
in the angular domain.

A. System Parameters

Computer simulations are conducted to verify the accuracy
of our analytical results, and the simulation results are obtained
by averaging over 10,000 channel realizations. the channel
with the parameter settings is generated using floating-point
arithmetic in MATLAB. In the simulation, the channel samples
are generated at a period of 0.005ms. Unless mentioned oth-
erwise , most of the simulations obey the following scenario.
There are 25 CNs with sufficient computational resources.
For each TN and CN, the CPU’s computational capacity is
randomly selected from the set {0.1,0.2,--- ,1.0} GHz. The
Random Access Memory (RAM) size is 2 GB and the local
computation’s energy per CPU cycle z; follows a uniform
distribution in the range of (0,20 x 10~!!) J/cycle. For the
computing task, we consider a robot mapping application
similar to that in [42], [52], where the task size of any TN
k for the computation offloading is a; = 500 KB, Vk € S,
the SINR threshold is 1.5 dB, and the required number of CPU
cycles per bit follows the uniform distribution in [500, 1500]
cycles/bit.

The nodes are uniformly distributed in a square-shaped cell
with a side length of 2 x R, where R denotes the cell size.
We simulate a micro-cell environment for the Non Line of
Sight (NLOS) case and set the carrier frequency to fo = 2
GHz. The external parameters and stochastic parameters are
extracted from Chapter 3 of [53]. The FAN and TNs heights
are set to be hpay = 5 m and hyy = 1.5 m, respectively.
The noise power is given by o2 = BkgToW, where B = 20
MHz denotes the bandwidth, kp = 1.381 x 10~23 represents
the Boltzmann constant, Ty = 290 (Kelvin) denotes the noise
temperature, and W = 9 dB is the noise figure.

B. Performance Evaluation

Fig. 2] shows the total energy consumption of massive
MIMO-aided fog computing systems versus the number of
TNs. Specifically, we compare the performance of our pro-
posed algorithm, to pure local computing, to the maximal
energy efficient task scheduling strategy (MEETS) of [9], to
the full offloading strategy, to the proposed algorithm with
multi-antenna relay, and to the proposed algorithm without
relay under a variety of diverse conditions. Local computing
and full offloading represent the scenarios that all the tasks
are computed locally and remotely in the CN, respectively.
We can observe from Fig. 2] that the total energy consumption
increases with the number of TNs, since higher computing

0.7

—#— Proposed algorithm
—&— Local computing
0.6 1| —s— MEETS

—d- - Full offloading <
—— Proposed algorithm with relay Vﬂ’

o5r —0O- Proposed algorithm without relay <

Total Energy Consumption (J)

Number of Task Nodes

Fig. 2. Total energy consumption of the massive MIMO system versus the
number of task nodes.
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0.6
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) i I i I I I I
150 200 250 300 350 400 450 500 550 600
Task Size (bits)

Fig. 3. Total energy consumption of the massive MIMO-enabled fog
computing system versus the task size.

energy consumption and offloading energy consumption are
required. It is worth noting that our proposed algorithm signif-
icantly outperforms both the pure local computing and the full
offloading strategies. The objective of MEETS is to reduce the
transmission energy consumption. Local computing performs
better than MEETS in terms of its total energy consumption
due to its reduced computational energy consumption. When
the number of TNs is small, since local computing consumes
much less energy than full offloading, most of the tasks
are computed locally, which makes the performance of our
proposed algorithm similar to that of local computing. In order
to verify the performance improvement of massive MIMO, we
plot the results of the proposed algorithm using a conventional
relay. It can be observed that the massive MIMO scheme
always performs better than the conventional multi-antenna
relay. On the other hand, the transmit energy consumption
is much higher than the computing energy consumption.
Therefore, we can observe from the figure that the total energy
consumption of the full offloading strategy is always much
higher than that of the local computing strategy. However, in
the regime of large task size, the delay requirement can not
be guaranteed if all the tasks are computed locally. Thus, the
tradeoff between local computing and full offloading strategies
under the delay requirement is demonstrated quite explicitly.

We then conduct an experiment to validate the tightness
of our proposed task offloading strategy. We plot the total



energy consumption versus the task size for different schemes
in Fig. [3] which characterizes both our proposed algorithm
and the simulated optimal scheme. It can be observed that
the variations of the values of the proposed algorithm and
the simulated optimal scheme agree reasonably well. The
performance of the local computing strategy approaches that
of the proposed algorithm when the task size decreases and
saves substantial energy over the full offloading strategy. This
suggests that there exists some critical value of the task size,
under which reducing the task size yields no total energy
consumption reduction for the proposed algorithm compared
to the local computing strategy. Additionally, we observe that
the total energy consumptions of both the local computing
strategy and of the proposed algorithm converge to that of the
optimal solution, when the task size decreases. This is due to
the fact that the local computing strategy is the most energy
efficient strategy when the task size is small. Furthermore, the
total energy consumption of the proposed algorithm is lower
than that of the other three existing strategies when the task
size is higher than 250 bits.

Fig. [A(a)] and Fig. [A(b)] show the total energy consumption
of the massive MIMO-aided fog computing system versus the
FAN-CN channel estimation quality 7p and TN-FAN channel
estimation quality 7g, respectively. With random offloading
strategy, all the TNs choose the random offloading ratios. We
observe from the figure that the energy consumption of the
proposed algorithm is much lower than that of local com-
puting, full offloading, and random offloading, respectively.
Additionally, we observe that the total energy consumptions
of the full offloading strategy, random offloading strategy,
and of the proposed algorithm is increased when the channel
estimation error increases. This is due to its higher transmit
energy consumption. As shown in both figures, it is obvious
that the total energy consumption of the local computing
strategy does not vary with the channel estimation accuracy.
Furthermore, it can be observed from Fig. @] that there exists
a crossover point between the random offloading strategy and
local offloading strategy. This means that the FAN-CN channel
estimation error 7p influences the offloading decisions. This
observation can be interpreted as follows: As the channel
estimation error 7p becomes large, the transmit power has
to be increased to meet the SINR constraint. Hence the total
energy consumption of local computing may become lower
than that of offloading. Similarly, it may be observed from
Fig. that there exists a crossover point between using the
local computing strategy and our proposed algorithm.

In order to further augment the interpretation of the asymp-
totic form of the effective SINR from Theorem [I] Fig. [3
plots the effect of different numbers of antennas on the total
energy consumption, which illustrates the scenario of the total
energy consumption versus the channel estimation error 7p for
different numbers of antennas. It can be observed that the total
energy consumption is increased when the channel estimation
error 7p is increased regardless of the number of antennas.
Furthermore, the larger the number of antennas, the smaller
the energy consumption reduction becomes upon having more
antennas. This coincides with the analytic results of Section
IV: For a large number of antennas, the SINR converges to
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Fig. 4. Total energy consumption of massive MIMO-enabled fog computing
system versus the channel estimation errors.
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Fig. 5. Total energy consumption of massive MIMO-enabled fog computing
systems versus the channel estimation error 7p.

a value that is independent of the number of antennas. These
results further indicate that the total energy consumption can
be reduced upon increasing the number of antennas. Therefore,
we can choose the most energy efficient offloading strategy for
our massive MIMO-aided fog computing system according to
the asymptotic form of the effective SINR.

VI. CONCLUSIONS

A massive MIMO-enabled task offloading framework has
been proposed, where multiple TNs rely on task offloading



via a massive MIMO-aided FAN to multiple CNs. We for-
mulated an optimization problem for minimizing the total
energy consumption of task offloading, in the face of imperfect
CSL In order to tackle this challenging problem, we have
solved the task offloading and power allocation problem in
an alternating manner. We first determined the task and com-
putational resource allocation for a given power allocation,
followed by presenting a sequential optimization framework
for determining the power allocation that minimizes the total
energy consumption at the TNs and FAN. Based on the task-,
computational-resource, and power-allocations, we have pro-
posed an iterative algorithm for obtaining the joint results. The
simulation results showed that the proposed scheme achieves
much better performance than the benchmarks. In a future
work we will consider the scenario of multiple task nodes
to multiple computing nodes under the proposed resource
allocation framework.

APPENDIX
A. Proof of Theorem
For the second term on the right hand side (RHS) in (T6),
we expand the trace of 7pQp G Px and obtain its power as
E [T%QDGTPXXHPHGTHQ%}
kK
e (GTPePRGH)
(L—7R) DB > Pi
M(1+73) '
Based on [54], we have the following results
. T g 0, if i#],
378 8 = {1, i =]

(45)

(46)

. . ~H A 1473
Based on ({0)), we arrive at limps o %g?gk = ;::5’. Next
D

we adopt the eigenvalue/eigenvector decomposition of HI,;IHk
to obtain

H"H = QAQ", (47)

where A = diag{)\1, -+, Ak} and Q represents the nonneg-
ative diagonal eigenvalue matrix and the unitary eigenvector
matrix, respectively. Therefore, we have E [hl,jhk] = Ak

For the third and fourth terms on the RHS in (16), we
expand the trace of GGTPHny and obtain its power as
follows:

(1-73)E [PH'npnf HIWPH] | 172E [QDGTPHTnR}

K
—(1-73)> pE [h;anghﬂ n
=1
r2E {QDGTPHTan%HTHPHGTHQ%} »

3 S8 pio (1 - T3)
M(1+73)

K
=Y it (1 —7H) + (48)

i=1

The SINR of the kth data stream defined in (I8) can be
expressed as (@9), shown at the top of next page. In the large-
antenna-size regime, we obtain the asymptotic form of the

SINR for the kth data stream as
(1-— 720)ka t
(1= 73)o2 e Sis, pi+ 03

Yk,M—00 = Vk,00o =

B. Proof of Lemma

Let us assume that {p(™} is a feasible solution of Prob-
lem P(n), which means that its objective function value
d(p™) — Y*p(p™) is no less than the optimal value of
problem P(n + 1), i.e., we have ¢(p"t1)) —p*p(pt1)) <
d(p™) — *(p™). Additionally, since the feasible set of
problem (28) is compact and nonempty, it follows that the
sequence ¢(p™) — ¥*p(p™) is bounded, and thus has a
limit.

Let us also assume that {p*} is the convergent point. Thus
{p*} must satisfy the KKT conditions of problem (36). For
any n, the KKT conditions are satisfied for problem P, i.e.,
there exist nonnegative numbers 1, o € Ry satisfying:

o) —vre@)] . UM
PR P ’

Pi Pk (50)
H1Py )

U™ (py,) = 0.

By denoting the limit of 7 and po by ] and p3, respectively,
and taking the limit n — oo for the KKT conditions of (50),
we obtain
usU(p*) =p2 |70 — B + G )+
0'2)\k k

s

(n)
) (n-1),9G(p; ")
Y O

* P *
=} [’Yo — 5 +G(p )] ,

O'r>\k'
=psF'(p*).
(51)
We finally conclude that
d[p(p) — ¥ p(p -
60) =66 D)] | e, OUG)
dp dp 52)
pip* =0,
paF(p*) =0,

proving that p* is a KKT point of problem (34).

C. Proof of Lemma 3]

k.k According to Algorithm [3] the zth iteration follows the

following inequalities

Brorar (#1570, p¢ ) (53a)
> Biowa (v, 7] (53b)
> B (v),p9), (530)

where holds because problem (36)) is convex and solution
v(?) represents its global optimal solution; has been
proved to be valid from Lemma [2] Given (33a) and (53D),
Eiotal (v, p) is reduced at each iteration. Furthermore, since
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)o2 A, YR py + HR)TD L2 4+ o2

(49)

M(1+73)

Eiota1 (v, p) is lower-bounded due to constraints, Algorithm
[3] converges within a finite number of iterations for a given
threshold.

D. Proof of Theorem
Based on the following results [54]

L 0, if
Mgnoo ,Z\4gZ 8= 17 if

we arrive at limp/—,o0 178581 = +

L7,

i=), o9

. We use the eigenval-

ue/eigenvector decomposition of H g kHS,k to obtain
H'H = QAQ"

where A = diag{\1, -, Ak} and Q represents the nonnega-
tive diagonal eigenvalue matrix and unitary eigenvector matrix,

(55)

respectively. Therefore, we have E [fl}jflk] = )\, and
E [nyxxmg] —PE [Tg(l — 2)PALOQIAT P
k,k
(1 -G PPEGTHOY 1
TI%TEQDGTPI:ITQDQI;I:ITHPHGTHQI;]
=PE[r3(1 - w3)PHLAM P+
TH(1 — 78)tr (GTPPHGTH) Ix+
THTStr (GTPﬂTﬂTHPHGTH) IK]
ke
=P {pede(1 = 75)75+
Zf{:1 pi(l — 7%)(1 - 75)7—%
MO +73)
S PiTETDAR(L — TD)
M(T+73) |

1 K
MTS sz)7

K
=Pi(Tipr + %TQ lei +
. (56)
where E LQDAQH = tr (A) Iy for any N x N matrix, and
QDQ = Ix and E [QSQH} = I, according to [55].
For the second term on the RHS in (38)), we expand the trace
of GGTPH'ny and obtain its power as follows:

E[GG PR A PTG G|
k,k

K
=(1- 7'%) ZpiE [ﬁLan%ﬁLH] +
i=1

72E [nDcTPﬂfﬂTHpHcTHng}

k.k (57)
2 2
TopeA(1 = 7D)
—Ej (1 — TDPEARL: — TD)
pioPAk(1 = 75) + M(1+73)
al 1
_E Ur)\k ) MT%pkAkﬂq—.

Upon substituting (36) and into (40), we obtain the
SINR of the kth data stream in (&I).

E. Proof of Proposition [2]

According to the Cauchy-Schwarz inequality, we have

K
< Zpi'

=% T (58)
K
Zi:l i i=1

As a result, we have

Ve <Ak, 00
(1—73)1 —73)prPs

Py(1 = 13)m3Nepr + iy pioAe(l = 73) + o3
(1= 3)(1 — 2P

T P(1 = T3)TENepk + ZK K2 —02\(1 —73) + 02

i=1 p,

(1- TD)(l - TS)PrPt

P(1- TD)TSAkP + %a?kk(l —73)+ 0,3'

i=1 p;
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Let us specify that Z %. Since 4, > 7o, the above

llp

k,k inequality can be written as

) —THP P — (1—73)7,
(1 _T%)Akﬂarvo

1
K < { (1-75 ZNe P Pryo — o270 } 2

F. Proof of Theorem
According to (42)), we have
(1 —73)(1 — 78)pe P
Pi(1— T%)TS)\kpk + ZZ 1 Dio2 (1 — 7))+ 02
< (1 —75)(1 — 78)pk P
— 2 2 2
Pi(1 = 73)73 kpk + proiXi(1 — 73) + 02
(1 — Tg)Pt
PerZX, + 02X +

’% S ’?k,oo -

o
pr(1-73)
7 (59)
Therefore, 4 is a concave function of pj. According to
the previous analytical results in subsection IV-B, the SPCA

method [46] can also be applied to solve Problem (44).
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