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a b s t r a c t

This paper analyzes stochastic linear discrete-time processes, whose process noise sequence consists of
independent and uniformly distributed random variables on given zonotopes. We propose a cumulant-
based approach for approximating both the transient and limit distributions of the associated state
sequence. The method relies on a novel class of k-symmetric Lyapunov equations, which are used to
construct explicit expressions for the cumulants. The state distribution is recovered via a generalized
Gram–Charlier expansion with respect to products of a multivariate variant of Wigner’s semicircle
distribution using Chebyshev polynomials of the second kind. This expansion converges uniformly,
under surprisingly mild conditions, to the exact state distribution of the system. A robust feedback
control synthesis problem is used to illustrate the proposed approach.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic linear discrete-time processes have been of major
importance in control theory ever since its early days (Bertsekas
& Shreve, 1978; Caines, 1988; Dragan, Morozan, & Stoica, 2010;
Kalman, 1960). For instance, stochastic linear system theory is the
basis for the classical LQG controller (Stengel, 1994). In this case,
the elements of the disturbance sequence of a linear discrete-
time system are modeled as random variables with Gaussian
probability distributions. This has the advantage that the state
has a Gaussian distribution, whose variance can be computed by
solving a Lyapunov recursion (Bittanti, Colaneri, & De Nicolao,
1991; Stengel, 1994).

Since real systems are subject to physical limitations, a natural
question one may ask is what happens when the process noise
has a bounded support. Assuming the system is asymptotically
stable, one can assert that in the limit, the state cannot have
a Gaussian distribution. This is a consequence of the bounded-
input-bounded-output lemma (Blanchini & Miani, 2008). Thus,
a Gaussian distribution is, in general, not particularly suited for
approximating the distribution of the state of a stochastic system
with bounded inputs. In particular, generalizing the central limit
theorem (Klartag, 2007) for such systems, is impossible.
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Numerical methods for computing (or approximating) the
probability distribution of the state of a stochastic linear dynamic
system with bounded inputs, typically proceed in two steps. In
the first step, the reachable set of the system—herein referred
to as the support of the probability distribution of the state—is
computed or (over-) approximated. Current reachability methods
include ellipsoidal calculus (Boyd, El-Ghaoui, Feron, & Balakrish-
nan, 2004; Kurzhanskiy & Varaiya, 2007), polytopic and zonotopic
bounding techniques (Bitsoris, 1988), as well as more general
(non-)convex set propagation techniques (Aubin, 1991; Chachuat
et al., 2015; Villanueva, Houska, & Chachuat, 2015). A more
complete overview of methods for computing reachable sets of
linear systems can be found in Blanchini (1999) and Blanchini
and Miani (2008).

The second step corresponds to the approximation of the
probability distribution of the system’s state on its support set.
For this task, a variety of methods are available. For example,
one could use sampling-based techniques. These include Monte-
Carlo and quasi Monte-Carlo (Caflisch, 1998); as well as Latin
hypercube sampling methods (Loh, 1996; Stein, 1987). However,
since these methods are based on exhaustive sampling, they can
only reach reasonable accuracies if the problem at hand is of
modest dimension (Xiu, 2010).

Another class of methods for approximating a distribution are
so called (generalized) Polynomial chaos expansion (PCE) methods.
These are popular tools for uncertainty quantification (Xiu, 2010;
Xiu & Karniadakis, 2002) which must (by now) be considered as
a state-of-the-art methodology for analyzing uncertain process
control systems (Nagy & Braatz, 2007). PCE is based on expanding
the uncertain variables with respect to a finite dimensional basis.
As such, these expansions can only be evaluated for dynamic
processes with a small to moderate amount of finite-dimensional

https://doi.org/10.1016/j.automatica.2019.108652
0005-1098/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2019.108652
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:meduardov@shanghaitech.edu.cn
mailto:borish@shanghaitech.edu.cn
https://doi.org/10.1016/j.automatica.2019.108652


Please cite this article as: M.E. Villanueva and B. Houska, On stochastic linear systems with zonotopic support sets. Automatica (2019) 108652,
https://doi.org/10.1016/j.automatica.2019.108652.

2 M.E. Villanueva and B. Houska / Automatica xxx (xxxx) xxx

uncertain variables. Therefore, in their current state, PCE methods
cannot be applied directly to stochastic processes, where the
disturbance sequence has infinitely many elements.

The main goal of this paper is the development of numerical
algorithms for computing (or approximating) the transient and
limit distributions of the state of a stochastic linear system, whose
process noise has a bounded zonotopic support. In this paper, we
do not follow the sampling or PCE route, since these methods
are only efficient in low-dimensional spaces. Instead, this paper
proposes a moment (or cumulant) based approach (Zhang, 2002)
for constructing accurate approximations of probability density
functions. Notice that if one is able to compute the cumulants of
a distribution, a generalized Gram–Charlier (or Edgeworth) series
can be used to reconstruct its underlying probability density
function (Berkowitz & Garner, 1970; Cohen, 1998; Kendall &
Stuart, 1969). For a history of Gram–Charlier expansions, the
reader is referred to Hald (2000, 2002) and for a discussion of
their multivariate extensions to Berkowitz and Garner (1970) and
Withers and Nadarajah (2014).

Contributions

The two main contributions of this paper can be outlined as
follows.

• We provide an explicit formula for computing the cumulants
of both the transient and limit distributions of the state
sequence of a stochastic discrete-time linear systems, whose
process noise is uniformly distributed on a zonotope. This
formula is based on a novel class of k-symmetric Lyapunov
recursions, as summarized in Theorem 1.

• We develop a generalized Gram–Charlier expansion (GCE) in
order to recover accurate numerical approximations of the
distribution of the state sequence from its cumulants. This
expansion uses Wigner semicircle distributions and their
associated Chebyshev polynomials of the second kind in
order to construct an expansion that converges under mild
regularity assumptions on the reachability properties of the
underlying linear system, as summarized in Theorem 2.

Section 2 introduces the problem formulation, while
Sections 3 and 4 elaborate on the contributions outlined above.
Section 5 illustrates the corresponding methodology by analyzing
a case study from the field of robust control. Finally, Section 6
concludes the paper.

Notation and preliminaries

We use the notation A⊗B to denote the Kronecker product of
two matrices A and B. Moreover,

A⟨k⟩
= A ⊗ A ⊗ · · · ⊗ A  

k times

denotes the Kronecker power of A for k ≥ 1. Here, we define
A⟨0⟩

= 1. The function

Symk (A) =
1

(2k)!
(∇∇

⊺)⟨k⟩
(
(x⊺)⟨k⟩Ax⟨k⟩)

denotes the symmetrizer of order k, as analyzed in Holmquist
(1985) and Schott (2003). It is defined for all matrices A ∈ Rnk×nk .
Moreover, A is called k-symmetric if Symk (A) = A. The symbol
∇ is used to denote the gradient operator and ∇∇

⊺F (x) denotes
the Hessian matrix of a function F : Rn

→ R at x ∈ Rn. The
trace of a square matrix A is denoted by Tr(A). The Hadamard (or
componentwise) product of two matrices, is denoted by A⊙B for
A, B ∈ Rm×n. The symbol 1 denotes a unit matrix of appropriate
dimensions.

Throughout this paper In = [−1, 1]n denotes the closed
n-dimensional unit box, int(In) its interior, and

GIn + c =
{
Gz + c | z ∈ In

}
a zonotope with center c and shape matrix G. The total variation
of an integrable function f : In → R is given by

∥f ∥TV = max
Y ′⊆In

⏐⏐⏐⏐∫
Y ′

f (y)dy
⏐⏐⏐⏐ .

The probability of an event is denoted by Pr(·). For example, if
z ∈ Rn is a random variable with probability distribution ρ, we
use the notation

Pr(z ∈ Z) =

∫
Z
ρ(z)dz

to denote the probability that z is in the set Z ⊆ Rn.

2. Problem formulation

This paper is concerned with stochastic linear discrete-time
processes of the form

xk+1 = Axk + Bwk with x0 = 0 . (1)

Here, xk and wk denote the state and process noise at time k,
respectively. The matrices A ∈ Rnx×nx , and B ∈ Rnx×nw are
assumed to be given.

Assumption 1. The elements, wk, of the process noise sequence
are, for all k ∈ N, independent and identically distributed (i.i.d.)
uniform random variables over Inw .

The reachable set of the system at time n ≥ 1,

Xn =

{
n−1∑
k=0

AkBwn−k−1

⏐⏐⏐⏐⏐∀k ∈ {0, . . . , n − 1},
wk ∈ Inw

}
,

is a zonotope (Blanchini & Miani, 2008; Kolmanovsky & Gilbert,
1998). Notice that Xn can be interpreted as the support of the
probability distribution ρn, of the state xn at time n. Moreover,
if all eigenvalues of A are in the open unit disk, the limit set

X∞ = lim
n→∞

Xn

exists1 and it is bounded (Bittanti et al., 1991; Blanchini & Miani,
2008)—although it is in general not a zonotope. Thus, neither the
distributions ρn nor the limit distribution for n → ∞ (if this
limit exists) are Gaussian. Moreover, an explicit characterization
of these functions is, in general, impossible. Therefore, the goal of
the remainder of this paper is to find computationally tractable
approximations of these distributions.

3. Cumulant generating function

This section presents an analysis of the cumulant generating
functions

∀y ∈ Rnx , Cn(y) = log
(
E
(
ey

⊺xn
))

(2)

that are associated with the distributions ρn (Kendall & Stuart,
1969). We analyze these functions on the polar sets

X∗

n =

{
y ∈ Rnx

⏐⏐⏐⏐⏐max
x∈Xn

y⊺x ≤ 1

}
of the reachable sets Xn. Let ζ (s) =

∑
∞

n=1
1
ns denote Riemann’s

ζ -function and Bj the jth column of B.

1 The set X∞ is a limit of the sequence (Xn), if the Hausdorff distance between
X∞ and Xn converges to 0 for n → ∞.
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Lemma 1. Let Assumption 1 be satisfied. The cumulant generating
function Cn satisfies

Cn(y) =

∞∑
r=1

n−1∑
k=0

nw∑
j=1

(−1)r+1ζ (2r)
rπ2r

(
B⊺
j (A

⊺)ky
)2r

(3)

for all n ∈ N. The infinite sum on the right-hand of the above
expression converges uniformly for all y ∈ X∗

n .

Proof. Let Mn denote the moment generating function,

Mn(y) = E
(
ey

⊺xn
)

=

∫
Xn

ey
⊺xρn(x) dx ,

which is closely related to the cumulant generating function,
Cn(y) = log(Mn(y)). By substituting the explicit solution of (1)
in the integral above and using Assumption 1 we obtain

Mn(y) =

n−1∏
k=0

∫
Inw

exp
(
y⊺AkBwn−k−1

)
2nw

dwn−k−1 .

Next, an application of Fubini’s theorem and using the definition
of the hyperbolic sine function yields

Mn(y) =

n−1∏
k=0

nw∏
j=1

1
y⊺AkBj

sinh
(
y⊺AkBj

)
.

Since ξ ↦→
sinh(ξ )

ξ
is an entire function with roots at ξℓ =

√
−1πℓ

for all ℓ ∈ Z \ {0}, we can apply Weierstrass’ factorization
theorem (Busam & Freitag, 2009) to write

sinh(ξ )
ξ

=

∞∏
ℓ=1

(
1 +

ξ 2

π2ℓ2

)
.

This representation converges absolutely for any ξ ∈ C. Thus, we
arrive at the convergent product representation

Mn(y) =

n−1∏
k=0

nw∏
j=1

∞∏
ℓ=1

(
1 +

(
y⊺AkBj

)2
π2ℓ2

)
. (4)

Taking logarithms on both sides yields

Cn(y) =

n−1∑
k=0

nw∑
j=1

∞∑
ℓ=1

log

(
1 +

(
y⊺AkBj

)2
π2ℓ2

)
.

Since we have

log(1 + ξ ) =

∞∑
r=1

(−1)r+1

r
ξ r

for all ξ ∈ (−1, 1), we find that the equation

Cn(y) =

∞∑
r=1

n−1∑
k=0

nw∑
j=1

(−1)r+1ζ (2r)
rπ2r

[
B⊺
j (A

⊺)ky
]2r

holds for all y such that |B⊺
j (A

⊺)ky| < π , for all j ∈ {1, . . . , nw},
and all k ∈ {1, . . . , n}. The statement of the lemma follows, as
this inequality holds for all y ∈ X∗

n . □

Lemma 1 can be used to construct a computationally tractable
explicit expression of the cumulants of ρn. Let us introduce the
r-symmetric matrix

Qr =

nw∑
j=1

B⟨r⟩
j

(
B⟨r⟩
j

)⊺

(5)

and its associated generalized Lyapunov recursion

Pr,k+1 = Symr
(
A⟨r⟩Pr,k

(
A⟨r⟩)⊺

+ Qr
)

(6)

with Pr,0 = 0 for all k, r ∈ N. For r = 1, (6) corresponds to the
standard Lyapunov discrete-time recursion.

Theorem 1. Let Assumption 1 be satisfied and let Pr,n denote the
solution of (6). If we set

K2r,n =
(−1)r+1(2r)!ζ (2r)

rπ2r Pr,n ,

then the cumulant generating functions Cn satisfy

Cn(y) =

∞∑
r=1

1
(2r)!

(
y⟨r⟩)⊺ K2r,ny⟨r⟩ (7)

for all y ∈ X∗
n and all n ∈ N.

Proof. An application of the mixed product rule for Kronecker
products on (3) yields

Sj,k,r =
(
B⊺
j (A

⊺)ky
)2r

=
(
y⊺AkBjB

⊺
j (A

⊺)ky
)⟨r⟩

.

Let us take the sums over k and j on both sides and substitute

Qr =

nw∑
j=1

B⟨r⟩
j

(
B⟨r⟩
j

)⊺

(8)

Pr,n =

n−1∑
k=0

Symr

((
A⟨r⟩)k Qr

((
A⟨r⟩)⊺)k) . (9)

This yields the equation

n−1∑
k=0

nw∑
j=1

Sj,k,r =
(
y⟨r⟩)⊺ Pr,ny⟨r⟩. (10)

The relation for Pr,n in (9) is the unique solution of (6). Now,
Lemma 1 implies that

Cn(y) =

∞∑
r=1

(−1)r+1ζ (2r)
rπ2r

(
y⟨r⟩)⊺ Pr,ny⟨r⟩ . (11)

The statement of the theorem follows after a re-scaling of the
coefficients by means of the expression

K2r,n =
(−1)r+1(2r)!ζ (2r)

rπ2r Pr,n ,

for the even cumulants of ρn. □

Notice that the odd cumulants, K2r−1,n = 0, vanish due to the
symmetry of the probability distribution ρn.

Remark 1. Clearly, the generalized Lyapunov equation (12) is
time-autonomous. Therefore, it can be ‘‘warm-started’’ using an
initial value Pr,0 ̸= 0 corresponding to the re-scaled cumulants
of an appropriately defined random variable x0 representing the
unknown initial state.

3.1. Limit behavior

In order to analyze the limit distribution of the state sequence
induced by (1), we introduce the following technical proposition.
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Proposition 1. The following statements are equivalent.

(1) The limit set X∞ exists and it is bounded.
(2) The symmetric discrete-time Lyapunov equation

P1,∞ = AP1,∞A⊺
+ BB⊺ (12)

admits a positive semi-definite solution P1,∞ ⪰ 0.
(3) The generalized Lyapunov equation

Pr,∞ = Symr
(
A⟨r⟩Pr,∞A⟨r⟩

+ Qr
)

(13)

admits a positive semi-definite solution Pr,∞ ⪰ 0 for all r ∈ N.

Proof. The equivalence of the first two statements is well known
(Bittanti et al., 1991; Kolmanovsky & Gilbert, 1998). To establish
the remaining equivalence, we assume momentarily that the
symmetric matrix

Y =

nx∑
k=0

AkBB⊺(Ak)⊺

has full rank and such that (12) admits a positive semi-definite
solution if and only if all the eigenvalues of A are in the open
unit disk. Since the spectrum of A⟨k⟩, is given by

spec
(
A⟨k⟩)

=

⎧⎨⎩
k∏

j=1

λj

⏐⏐⏐⏐⏐⏐ λ1, . . . , λk ∈ spec(A)

⎫⎬⎭ ,

Eq. (13) admits a positive semi-definite solution if and only if (12)
has a positive semi-definite solution. This shows that the second
and third statements of Proposition 1 are equivalent whenever
Y has full-rank. Otherwise, if Y does not have full-rank, one can
project (12) and (13) onto the subspaces spanned by Y and Y ⟨k⟩,
respectively. One can then apply an analogous argument in these
subspaces to show that the statements of Proposition 1 remain
correct without any full-rank assumptions. □

Corollary 1. Let the generalized Lyapunov equations (13) admit
positive semi-definite solutions Pr,∞. Then, the limit distribution
ρ∞ = limn→∞ ρn exists. Moreover, its even cumulants are given
by

K2r,∞ =
(−1)r+1(2r)!ζ (2r)

rπ2r Pr,∞

for all r ∈ N.
The statement of this corollary follows by combining the re-

sults from Proposition 1 and Theorem 1.2

Remark 2. Notice that the even moments of ρn can be recovered
from the cumulants K2k,n using the recursion (Noschese & Ricci,
2003)

M2r+2,n = Symr+1

(
r∑

i=0

(
2r + 1
2i + 1

)
M2(r−i),n ⊗ K2(i+1),n

)
with r ∈ {0, 1, 2, . . .}. This iteration is started at M0,n = 1
and generates even multivariate Bell polynomials (Withers &
Nadarajah, 2014).

4. Generalized Gram–Charlier expansions with respect to a
multivariate Chebyshev basis

Let ω be the multivariate Wigner semicircle distribution,

∀x ∈ Inx , ω(x) =

(
2
π

)nx nx∏
j=1

√
1 − x2j

2 Notice that 0 ∈ X∗
∞

if the conditions from Corollary 1 are satisfied, i.e., (3)
formally holds for n = ∞ in an open neighborhood of 0.

and U the generating function of the multivariate Chebyshev
polynomials of the second kind,

U(x, y) = ey
⊺x

nx∏
j=1

⎛⎜⎝cosh
(
yj
√
x2j − 1

)
+

xj sinh
(
yj
√
x2j − 1

)
√
x2j − 1

⎞⎟⎠ .

Our goal is to construct a generalized multivariate GCE of the
function ρn with respect to ω. Let

∀x ∈ Inx , ∀r ∈ N, Ψ2r (x) =
(
∇y∇

⊺
y

)⟨r⟩
U(x, 0)

be the even multivariate Chebyshev polynomials (of the second
kind) in matrix form.

Theorem 2. Assume (w.l.o.g.) that Xn ⊆ int (Inx) for any given
n ∈ N. Furthermore, let the pair (A, B) be reachable. Then, one can
find unique r-symmetric GCE coefficients Λr,n ∈ Rnrx×nrx such that
there exists for every ν ≥ 1 a constant V < ∞ such that the function

φN,n(x) =

(
N∑

r=0

Tr
(
Λr,nΨ2r (x)

))
ω(x)

satisfiesφN,n − ρn

TV ≤

V
ν(N − ν)ν

for all n ≥ νnx+1 and all N > ν. In particular, if n ≥ nx+1, the GCE
approximation φN,n converges uniformly to ρn on Inx for N → ∞.

Proof. The main idea behind the proof for this theorem, is to use
the smoothing properties of the convolution operator. Because we
assume that (1) is reachable, it is an immediate consequence of
the Cayley Hamilton theorem and the pigeonhole principle that xn
is for all n ≥ nx +1 a superposition of at least 2 random variables
with bounded (and unimodal) probability distributions. Thus, ρn
is, for all n ≥ nx + 1, a Lipschitz continuous function. Likewise, if
n ≥ νnx + 1, the (ν − 1)th derivative of ρn exists and is Lipschitz
continuous.

Moreover, the assumption Xn ⊆ int(Inx ) implies that the
auxiliary functions

χn(x) = ρn(x)
1

ω(x)
= ρn(x)

(π

2

)nx 1∏nx
j=1

√
1 − x2j

have globally Lipschitz continuous (ν −1)th derivatives on Inx for
all n ≥ νnx + 1. The singularities of the derivatives of ω on the
boundary of Inx cancel out, since ρn(x) = 0 for all x /∈ Xn. Thus,
the Chebyshev series of

χn(x) =

∞∑
r=0

Tr
(
Λr,nΨ2r (x)

)
, (14)

is absolutely and uniformly convergent for all x ∈ Inx and all
n ≥ νnx + 1. A proof of this result can be found in Trefethen
(2013),3 where the convergence rate estimate,χn −

N∑
r=0

Tr
(
Λr,nΨ2r

)
TV

≤ O
(

1
ν(N − ν)ν

)
,

can also be found. The statement of the theorem follows after
multiplying both sides of Eq. (14) with ω(x). □

3 The result in Trefethen (2013) is valid for Chebyshev polynomials of the
first kind. However, it can be transferred to the required polynomial basis, using
Equation (5.109) in Mason and Handscomb (2002).
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4.1. Algorithmic aspects

The coefficients Λr,n of the GCE in Theorem 2 can be computed
by comparison of coefficients. Notice that

M2k,n =

k∑
r=0

(∫
Inx

(xx⊺)⟨k⟩Tr
(
Λr,nΨ2r (x)

)
ω(x) dx

)
(15)

yields a block-triangular linear system for Λr,n, with respect to
the even moments M2r,n of ρn—which are known explicitly. Let
Θk,r ∈ Rnkx×nkx be the coefficients of the monomials (xx⊺)⟨k⟩ in the
Chebyshev basis,

(xx⊺)⟨k⟩ =

k∑
r=0

Symk
(
Θk,r ⊙

(
Ψ2r (x) ⊗ 1⟨k−r⟩)) , (16)

which can be found by a comparison of coefficients. Moreover,
we introduce the constant scaling matrices

Ωr =

∫
Inx

Ψ2r (x)Tr (IrΨ2r (x)) ω(x) dx .

Here, the symbol Ir ∈ Rnr×nr denotes a matrix of ones. The matrix
Ξr denotes the componentwise inverse of the matrix Θr,r ⊙ Ωr ,
such that

Ξr ⊙ [Θr,r ⊙ Ωr ] = Ir .

The following theorem establishes a recursion for computing the
coefficients Λk,n.

Theorem 3. The Chebyshev coefficients Λk,n of ρn (as defined in
Theorem 2) can be computed by the recursion

Λk,n = Ξk ⊙

(
M2k −

k−1∑
r=0

Symk
(
Θk,r ⊙

(
(Ωr ⊙ Λr,n) ⊗ 1⟨k−r⟩)))

for all k ∈ N.

Proof. Using the orthogonality of the Chebyshev polynomials,
Eq. (15) can be written as

M2k,n =

k∑
r=0

[∫
Inx

Θk,r ⊙ Symk
(
Ψ2r (x) ⊗ 1k−r) Tr (Λr,nΨ2r (x)

)
ω(x) dx

]
.

Since the Chebyshev polynomials are orthonormal with respect
to (scaled) weighting functions ω, we find∫
Inx

Ψ2r (x)Tr
(
Λr,nΨ2r (x)

)
ω(x) dx = Ωr ⊙ Λr,n .

Thus, the linear equation system for the coefficients Θk,r can be
further simplified as

M2k,n =

k∑
r=0

Symk
(
Θk,r ⊙ (Ωr ⊙ Λr,n) ⊗ 1⟨k−r⟩) .

Now, the statement of the theorem follows directly by solving the
latter equation with respect to Λk,n. □

The algorithm in Fig. 1 summarizes the complete procedure
for computing the Chebyshev approximation φN,n of the state
distribution ρn. Notice that this approximation is such that the
cumulative distribution error,⏐⏐⏐⏐Pr(xn ∈ X) −

∫
X

φN,n(x) dx
⏐⏐⏐⏐ ≤

φN,n − ρn

TV ,

Input: System matrices A, B, expansion order N ∈ N.
Algorithm:

1. Solve the generalized Lyapunov recursion (see Section 3)

∀r ∈ {1, 2, . . . ,N}, Pr,k+1 = Symr
(
A⟨r⟩Pr,k

(
A⟨r⟩)⊺

+ Qr
)

with Qr =

nw∑
j=1

B⟨r⟩
j

(
B⟨r⟩
j

)⊺

and Pr,0 = 0 for k ∈ {1, 2, . . . , n}.

2. Compute the associated cumulants (see Theorem 1),

K2r,n =
(−1)r+1(2r)!ζ (2r)

rπ2r Pr,n .

3. Use the recursion formula (see Remark 2)

M2r+2,n = Symr+1

(
r∑

i=0

(
2r + 1
2i + 1

)
M2(r−i),n ⊗ K2(i+1),n

)
with M0,n = 1 to compute the associated even moments.

4. Compute the coefficients Θk,r by comparing the coefficients
of the left- and right hand side polynomials in Eq. (16).

5. Compute the GCE coefficients (see Theorem 3)

Λk,n = Ξk ⊙

(
M2k −

k−1∑
r=0

Symk
(
Θk,r ⊙

(
(Ωr ⊙ Λr,n) ⊗ 1

⟨k−r⟩))) .

Output: Coefficients Λr,n of the Chebyshev approximation

ρn(x) ≈ φN,n(x) =

(
N∑

r=0

Tr
(
Λr,nΨ2r (x)

))
ω(x)

of the state distribution ρn of Eq. (1) (see Theorem 2).

Fig. 1. Algorithm for approximating the state distribution ρn .

is bounded by the term
φN,n − ρn


TV. Theorem 2 provides a

bound on this numerical approximation error.

5. Constrained stochastic linear control systems

In this section we illustrate the applicability of the theory
developed so far, through the construction of optimized feedback
gains, K, for

xk+1 = (Ax + AuK) x + Bwk with x0 = 0 (17)

with respect to the objective function

lim
n→∞

E
(
∥xn∥2

2 + ∥Kxn∥2
2

)
=

∫
Inx

(
∥x∥2

2 + ∥Kx∥2
2

)
ρ∞(x,K) dx .

We enforce the joint-chance state- and control constraint

lim
n→∞

Pr ( xn /∈ X ∨ Kxn /∈ U ) ≤ ϵ

for given compact state and control constraint sets, X ⊆ Rnx and
U ⊂ Rnu . The parameter ϵ > 0 is a given bound on the constraint
violation probability. Let X∞(K) be reachable set of (17) for some
K and

S(K) = X ∩

{
x ∈ X∞(K)

⏐⏐⏐⏐⏐ Kx ∈ U

}
.

The joint-chance constraint can then be written as∫
S(K)

ρ∞(x,K) dx ≥ 1 − ϵ .



Please cite this article as: M.E. Villanueva and B. Houska, On stochastic linear systems with zonotopic support sets. Automatica (2019) 108652,
https://doi.org/10.1016/j.automatica.2019.108652.

6 M.E. Villanueva and B. Houska / Automatica xxx (xxxx) xxx

Fig. 2. Density plot of the GCE approximations φN,∞ using 4th (N = 2, left), 8th (N = 4, center), and 10th (N = 5, right) moment expansions, respectively. The red
dashed line depicts the boundary of the constraint set X. The red dotted line denotes the boundary of the set

{
x ∈ X∞(K⋆)

⏐⏐ K⋆x ∈ U
}
. The red solid line depicts

the boundary of S(K⋆).

In summary, the control design problem is given by

min
K

∫
Inx

(
∥x∥2

2 + ∥Kx∥2
2

)
ρ∞(x,K) dx

s.t.
∫
S(K)

ρ∞(x,K) dx ≥ 1 − ϵ.

(18)

Here, one optimizes over stabilizing control gains such that the
limit distribution ρ∞(·,K) is well defined.

We consider the linear system (17) with

Ax =

(
1 1
0 1

)
, Au =

(
1
1

)
, B =

( 3
20

1
4

−
1
5

3
20

)
,

and wk ∈ [−1, 1]2 for all k ∈ N+. The constraints are

X = [−0.4, 0.4]2 and U = [−0.3, 0.3] .

The constraint violation parameter is given by ϵ = 0.15. The
feedback gain K⋆

≈ (−0.42, −0.81) was computed by solving a
discretization of (18), using the truncated GCE φ5,∞ (x,K∗). Fig. 2
shows the contours of the truncated GCEs for N = 2 (left), N = 4
(center), and N = 5 (right). The approximate support X∞ (K⋆) of
ρN,∞ was computed so as to satisfy

X∞

(
K⋆
)

⊆ X∞

(
K⋆
)

⊆ X∞

(
K⋆
)
⊕ ϵ̄ Inx

with ϵ̄ = 10−4 (Rakovic, Kerrigan, Kouramas, & Mayne, 2005).
In order to verify the accuracy of the approximation,

φ5,∞(x,K⋆) ≈ ρ∞(x,K⋆) ,

a Monte-Carlo simulation (2.5× 106 samples) was implemented.
The constraint violation probability computed by Monte-Carlo
sampling, Pr (x∞ /∈ S (K⋆)) ≈ 0.14, must be compared to our
approximation

= 1 −

∫
S(K⋆)

φ5,∞
(
x,K⋆

)
= 0.15 .

Therefore, for this example, the error associated to the use of a
10th order GCE approximation is approximately 1%. On the other
hand, using a second order expansion φ1,∞ such analysis yields
Pr (x∞ /∈ S (K⋆)) ≈ 0.58 ( approximately 44% error). Notice that
the assumption of a Gaussian distribution, would yield a similar
error in the approximation.

6. Conclusions

This paper proposed a cumulant-based approach used for
computing the transient and limit distributions of the state of
a stochastic linear system with zonotopic support sets. Explicit
expressions for the cumulants of these distributions have been
constructed (see Theorem 1) by introducing a novel class of

k-symmetric Lyapunov recursions. Moreover, in this paper a
generalized Gram–Charlier expansion (GCE) based on Chebyshev
polynomials was introduced. This GCE expansion can be used
to recover the state distributions from their cumulants under
a mild reachability assumption. Theorem 2 provides a uniform
convergence result for this GCE approximation. The complete
algorithmic procedure has been summarized in Fig. 1, which has
been applied to a control synthesis problem for a constrained
stochastic linear control system, illustrating the accuracy of the
approach.

References

Aubin, J.-P. (1991). Viability theory. Birkhäuser Boston.
Berkowitz, S., & Garner, F. (1970). The calculation of multidimensional Hermite

polynomials and Gram-Charlier coefficients. Mathematics of Computation,
24(11), 537–545.

Bertsekas, D. P., & Shreve, S. (1978). Stochastic optimal control: the discrete-time
case. Academic Press.

Bitsoris, G. (1988). On the positive invariance of polyhedral sets for discrete-time
systems. Systems & Control Letters, 11(3), 243–248.

Bittanti, S., Colaneri, P., & De Nicolao, G. (1991). The periodic Riccati equation. In
S. Bittani, A. J. Laub, & J. C. Willems (Eds.), The Riccati equation (pp. 127–162).
Springer Verlag.

Blanchini, F. (1999). Set invariance in control. Automatica, 35(11), 1747–1767.
Blanchini, F., & Miani, S. (2008). Set-theoretic methods in control. Springer,

Birkhäuser.
Boyd, S., El-Ghaoui, L., Feron, E., & Balakrishnan, V. (2004). Linear matrix

inequalities in system and control theory (vol. 15). SIAM.
Busam, R., & Freitag, E. (2009). Complex analysis. Springer.
Caflisch, R. E. (1998). Monte Carlo and quasi-Monte Carlo methods. Acta

Numerica, 7, 1–49.
Caines, P. E. (1988). Linear stochastic systems (vol. 77). John Wiley NYC.
Chachuat, B., Houska, B., Paulen, R., Perić, N., Rajyaguru, J., & Villanueva, M.

E. (2015). Set-theoretic approaches in analysis, estimation and control of
nonlinear systems. IFAC-PapersOnLine, 48(8), 981–995.

Cohen, L. (1998). Generalization of the Gram-Charlier/Edgeworth series and
application to time-frequency analysis. Multidimensional Systems and Signal
Processing, 9(4), 363–372.

Dragan, V., Morozan, T., & Stoica, A.-M. (2010). Mathematical methods in robust
control of discrete-time linear stochastic systems. Springer.

Hald, A. (2000). The early history of the cumulants and the Gram-Charlier series.
International Statistical Review, 68(2), 137–153.

Hald, A. (2002). On the history of series expansions of frequency functions and
sampling distributions (vol. 49) (pp. 1873–1944). Det Kongelige Danske
Videnskabernes Selskab.

Holmquist, B. (1985). The direct product permuting matrices. Linear and
Multilinear Algebra, 17(2), 117–141.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Transactions of the ASME-Journal of Basic Engineering, 82(1), 35–45.

Kendall, M. G., & Stuart, A. (1969). The advanced theory of statistics (vol. 3). Charles
Griffin.

Klartag, B. (2007). A central limit theorem for convex sets. Inventiones
Mathematicae, 168(1), 91–131.

http://refhub.elsevier.com/S0005-1098(19)30513-8/sb1
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb2
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb2
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb2
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb2
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb2
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb3
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb3
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb3
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb4
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb4
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb4
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb5
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb5
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb5
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb5
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb5
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb6
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb7
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb7
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb7
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb8
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb8
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb8
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb9
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb10
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb10
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb10
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb11
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb12
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb12
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb12
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb12
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb12
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb13
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb13
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb13
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb13
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb13
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb14
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb14
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb14
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb15
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb15
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb15
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb16
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb16
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb16
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb16
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb16
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb17
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb17
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb17
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb18
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb18
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb18
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb19
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb19
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb19
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb20
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb20
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb20


Please cite this article as: M.E. Villanueva and B. Houska, On stochastic linear systems with zonotopic support sets. Automatica (2019) 108652,
https://doi.org/10.1016/j.automatica.2019.108652.

M.E. Villanueva and B. Houska / Automatica xxx (xxxx) xxx 7

Kolmanovsky, I., & Gilbert, E. G. (1998). Theory and computation of disturbance
invariant sets for discrete-time linear systems. Mathematical Problems in
Engineering: Theory, Method and Applications, 4(4), 317–367.

Kurzhanskiy, A. A., & Varaiya, P. (2007). Ellipsoidal techniques for reachability
analysis of discrete-time linear systems. IEEE Transactions on Automatic
Control, 52(1), 26–38.

Loh, W.-L. (1996). On latin hypercube sampling. The Annals of Statistics, 24(5),
2058–2080.

Mason, J. C., & Handscomb, D. C. (2002). Chebyshev polynomials. Chapman &
Hall/CRC.

Nagy, Z., & Braatz, R. D. (2007). Distributional uncertainty analysis using power
series and polynomial chaos expansions. Journal of Process Control, 17(3),
229–240.

Noschese, S., & Ricci, P. E. (2003). Differentiation of multivariable composite func-
tions and bell polynomials. Journal of Computational Analysis and Applications,
5(3), 333–340.

Rakovic, S. V., Kerrigan, E. C., Kouramas, K. I., & Mayne, D. Q. (2005). Invariant ap-
proximations of the minimal robust positively invariant set. IEEE Transactions
on Automatic Control, 50(3), 406–410.

Schott, J. R. (2003). Kronecker product permutation matrices and their applica-
tion to moment matrices of the normal distribution. Journal of Multivariate
Analysis, 87(1), 177–190.

Stein, M. (1987). Large sample properties of simulations using latin hypercube
sampling. Technometrics, 29(2), 143–151.

Stengel, R. F. (1994). Optimal control and estimation. Dover Publications.
Trefethen, L. N. (2013). Approximation theory and approximation practice (vol.

128). SIAM.
Villanueva, M. E., Houska, B., & Chachuat, B. (2015). Unified framework for the

propagation of continuous-time enclosures for parametric nonlinear ODEs.
Journal of Global Optimization, 62(3), 575–613.

Withers, C. S., & Nadarajah, S. (2014). The dual multivariate Charlier and
Edgeworth expansions. Statistics & Probability Letters, 87, 76–85.

Xiu, D. (2010). Numerical methods for stochastic computations: a spectral method
approach. Princeton University Press.

Xiu, D., & Karniadakis, G. E. (2002). The Wiener–Askey polynomial chaos for
stochastic differential equations. SIAM Journal on Scientific Computing, 24(2),
619–644.

Zhang, D. (2002). Stochastic methods for flow in porous media: coping with
uncertainties. Academic Press.

Mario E. Villanueva is a postdoctoral researcher at
the School of Information Science and Technology at
ShanghaiTech University. He received a master and
Ph.D. in chemical engineering from Imperial College
London in 2011 and 2016, respectively. He was a
postdoctoral researcher at Texas A&M University in
2016. Mario Villanueva is the recipient of the 2016
Dudley Newitt Price and the 2018 SIST Excellent Post-
doc Award. His research interests include set based
computing, robust control, and global optimization.

Boris Houska is an assistant professor at the School of
Information Science and Technology at ShanghaiTech
University. He received a diploma in mathematics from
the University of Heidelberg in 2007, and a Ph.D. in
Electrical Engineering from KU Leuven in 2011. From
2012 to 2013 he was a postdoctoral researcher at the
Centre for Process Systems Engineering at Imperial Col-
lege London. Boris Houska’s research interests include
numerical optimization and optimal control, robust and
global optimization, as well as fast model predictive
control algorithms.

http://refhub.elsevier.com/S0005-1098(19)30513-8/sb21
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb21
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb21
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb21
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb21
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb22
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb22
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb22
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb22
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb22
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb23
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb23
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb23
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb24
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb24
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb24
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb25
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb25
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb25
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb25
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb25
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb26
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb26
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb26
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb26
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb26
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb27
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb27
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb27
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb27
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb27
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb28
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb28
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb28
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb28
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb28
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb29
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb29
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb29
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb30
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb31
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb31
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb31
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb32
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb32
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb32
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb32
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb32
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb33
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb33
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb33
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb34
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb34
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb34
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb35
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb35
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb35
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb35
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb35
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb36
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb36
http://refhub.elsevier.com/S0005-1098(19)30513-8/sb36

	On stochastic linear systems with zonotopic support sets
	Introduction
	Notation and Preliminaries

	Problem formulation
	Cumulant generating function
	Limit behavior

	Generalized Gram–Charlier expansions with respect to a multivariate Chebyshev basis
	Algorithmic aspects

	Constrained stochastic linear control systems
	Conclusions
	References


